全部悬赏
发布悬赏
专家入驻
Mathematica怎么计算特征向量特征值?
"不需要特征向量就不要去算。
In[1]:= Eigenvalues[{{a, b}, {c, d}}]
Out[1]= {1/2 (a + d - Sqrt[a^2 + 4 b c - 2 a d + d^2]),
1/2 (a + d + Sqrt[a^2 + 4 b c - 2 a d + d^2])}
需要就是
In[1]:= Eigensystem[{{a, b}, {c, d}}]
Out[1]= {{1/2 (a + d - Sqrt[a^2 + 4 b c - 2 a d + d^2]),
1/2 (a + d + Sqrt[a^2 + 4 b c - 2 a d + d^2])}, {{-((-a + d + Sqrt[
a^2 + 4 b c - 2 a d + d^2])/(2 c)),
1}, {-((-a + d - Sqrt[a^2 + 4 b c - 2 a d + d^2])/(2 c)), 1}}}"
¥200
¥9.9
¥39
¥149
¥10
免费
¥500
¥35
¥368
¥99
¥880
¥800
¥199
¥2.7
¥30
¥600
"不需要特征向量就不要去算。
In[1]:= Eigenvalues[{{a, b}, {c, d}}]
Out[1]= {1/2 (a + d - Sqrt[a^2 + 4 b c - 2 a d + d^2]),
1/2 (a + d + Sqrt[a^2 + 4 b c - 2 a d + d^2])}
需要就是
In[1]:= Eigensystem[{{a, b}, {c, d}}]
Out[1]= {{1/2 (a + d - Sqrt[a^2 + 4 b c - 2 a d + d^2]),
1/2 (a + d + Sqrt[a^2 + 4 b c - 2 a d + d^2])}, {{-((-a + d + Sqrt[
a^2 + 4 b c - 2 a d + d^2])/(2 c)),
1}, {-((-a + d - Sqrt[a^2 + 4 b c - 2 a d + d^2])/(2 c)), 1}}}"