水下无人系统智能化关键技术发展现状

摘 要
安全可靠的高速数据传输通信是UUS智能化、集群化、协同作战的关键技术,是水下控制、数据通信和图像传输的重要保障。通过通信系统将UUS组网,是解决特定问题的有效途径。构建多元化通信网络体系,发展传输距离远、速率大、容量高、可靠性高的传输手段,实现UUS多平台间的数据共享,是未来水下通信技术的发展方向。本节对当前的水下通信方式进行介绍,并对新型跨介质通信技术的发展进行展望。
电磁波信号在海水中快速衰减,在水下的传输距离非常有限。水声通信技术因其通信距离远、可靠性高等优点被广泛应用。世界上第一个具有实际应用意义的水声通信系统是美国海军水声实验室于1945年研制的水下电话,该系统采用单边带调制技术实现潜艇之间的通信。水声通信系统最初采用模拟调制方式,如伍兹霍尔海洋研究所在20世纪50年代末研制的调频水声通信系统,实现了水底到水面船只的通信。我国的660型通信声纳采用单边带调制技术,实现了语音通信。
2.2 水下激光通信技术
2.3 水下-空中跨介质通信技术
3.1 集群优化技术
然而,由于海底复杂环境和恶劣通信条件的限制,很多算法不能直接被移植到UUV集群应用当中。因此,现有智能算法在海洋环境的应用以及适用UUV集群的新智能控制算法的开发仍是未来UUV集群控制技术的关键所在。
3.2 集群任务规划
3.3 集群编队
4.1 BCF水下仿生机器人
4.2 MDF水下仿生机器人
4.3 JET水下仿生机器人
JET常见于水母和乌贼,这种运动方式主要通过类似水泵的装置进行吸排水,通过迅速排水产生的反冲力驱动水下机器人前行,这种运动方式的水下仿生机器人定向性好、制作方便、加速度也高。
4.4 水下仿生机器人智能化关键技术
参考文献:
1. 潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报, 2017, 25(1):44-51.
2. Baggeroer A B, Koelsch D, Der Heydt K V, et al. DATS-A digital acoustic telemetry system for underwater communications [C]. Oceans Conference, 1981:55-60.
3. Stojanovic M, Catipovic J, Proakis J G. Adaptive multichannel combining and equalization for underwater acoustic communications [J]. Journal of the Acoustical Society of America, 1993, 94(3):1621.
4. Pelekanakis K, Baggeroer A B. Exploiting space-time-frequency diversity with MIMO-OFDM for underwater acoustic communications [J]. 2011, 36(4):502-513.
5. Wiener T F, Karp S. The role of blue/green laser systems in strategic submarine communications [J]. IEEE Transactions on Communications, 1980, 28(9):1602-1607.
6. King R W P,Smith G S,Owens M. Antennas in matter:Fundamentals, theory, and applications [M], Cambridge:MIT Press, 1981.
7. Billard B, Wilsen P J. Sea surface and depth detection in the WRELADS airborne depth sounder [J]. Applied Optics, 1986, 25(13):2050-2059.
8. Hanson F, Radic S. High bandwidth underwater optical communication [J]. Applied Optics, 2008, 47(2):277-283.
9. Brundage H. Designing a wireless underwater optical communication system[J]. Massachusetts Institute of Technology. 2010, 2010:61-63.
10. Kirillov S N, Dmitriev V T, Aronov L V. Wireless system of high-speed underwater optical communication for transmission for videodata from a board of a submersible[C]. 2018 International Multi-Conference on Industrial Engineering and Modern Technologies, Vladivostok, Ruassia, 2018.
11. 姚灿. 水下光通信OOK调制解调系统研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
12. Wang P, Li C, Xu Z. A cost-efficient real-time 25 Mb/s system for led-uowc:Design, channel coding, FPGA implementation, and characterization [J]. Journal of Lightwave Technology, 2018(1):1.
13. Jamali M V, Salehi J A, Akhoundi F, et al. Performance studies of underwater wireless optical communication systems with spatial diversity:Mimo scheme [J]. IEEE Transactions on Communications, 2017, 65(3):1176-1192.
14. 刘翠海, 王文清. 外军潜艇通信关键技术及发展趋势[J].电讯技术, 2011, 51(7):187-192.
15. 高雨春. 引力波通信[J]. 北京电子, 2004(2):47-48.
16. 赵楠, 闫毅, 裴昌幸. 水下量子通信的研究[J]. 现代电子技术, 2008(7):10-16.
17. 刘翠海, 王文清. 外军潜艇通信关键技术及发展趋势[J]. 电讯技术, 2011, 51(7):187-192.
18. Takahashi R, Collaboration T. Status of TAMA300 [J]. Classical & Quantum Gravity, 2004, 21(5):S403-S408.
19. Acernese F, Amico P, Al-Shourbagy M, et al. Status of VIRGO [J]. Classical and Quantum Gravity, 2005, 22(18):S869.
20. Abramovici A, Althouse W E, Drever R W P, et al. LIGO:The laser interferometer gravitational-wave observatory [J]. Science, 1992, 256(5055):325-333.
21. 赵楠, 闫毅, 裴昌幸. 水下量子通信的研究[J]. 现代电子技术, 2008(7):10-16.
22. Shi P, Zhao S C, Li W D, et al. Feasibility of underwater free space quantum key distribution [J]. Eprint Arxiv, 2014, 1402-4666.
23. 嵇玲. 基于海水信道的量子通信[D]. 上海:上海交通大学, 2015.
24. Cao X, Sun H B, Jan G E. Multi-AUV cooperative target search and tracking in unknown underwater environment [J]. Ocean Engineering, 2018, 150:1-11.
25. Bian X Q, Mou C H, Yan Z P, et al. Formation coordinated control for multi-AUV based on spatial curve path tracking [C]. OCEANS'11 MTS/ IEEE KONA. Waikoloa, New Zealand, 2011:1-6.
26. Shojaei K. Neural network formation control of underactuated autonomous underwater vehicles with saturating actuators [J]. Neurocomputing, 2016, 194:372-384.
27. Huang Z, Zhu D, Sun B. A multi-AUV cooperative hunting method in 3-D underwater environment with obstacle [J]. Engineering Applications of Artificial Intelligence, 2016, 50:192-200.
28. Cao X, Huang Z, Zhu D. AUV cooperative hunting algorithm based on bio-inspired neural network for path conflict state [C]. Proceedings of 2015 IEEE International Conference on Information and Automation, Lijiang, China, 2015:1821-1826.
29. Sun X. Multi-agent formation control based on artificial force with exponential form [C]. Proceeding of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 2014:3128-3133.
30. 苏菲, 陈岩, 沈林成. 基于蚁群算法的无人机协同多任务分配[J]. 航空学报, 2008, 29(S1):184-191.
31. Duan H, Zhang X, Wu J, et al. Maxmin adaptive ant colony optimization approach to multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments [J]. Journal of Bionic Engineering, 2009, 6(2):161-173.
32. Duan H, Luo Q, Shi Y, et al. Hybridparticle swarm optimization and genetic algorithm for multi-UAV formation reconfiguration [J]. IEEE Computational Intelligence Magazine, 2013, 8(3):16-27.
33. 顾国昌, 仲宇, 张汝波. 一种新的多智能体强化学习算法及其在多机器人协作任务中的应用[J]. 机器人, 2003, 25(4):344-348.
34. 段勇, 徐心和. 基于多智能体强化学习的多机器人协作策略研究[J]. 系统工程理论与实践, 2014, 34(5):1305-1310.
35. Lauer M, Riedmiller M A. An algorithm for distributed reinforcement learning in cooperative multi-agent systems [C]. Proceedings of the Seventeenth International Conference on Machine Learning, Stanford, USA, 2000:535-542.
36. Rashid T, Samvelyan M, Schroeder C, et al. QMIX:Monotonic value function factorisation for deep multi-agent reinforcement learning [C]. Proceedings of the 35th International Conference on Machine Learning. Sydney, Australia, 2018.
37. 马硕, 马亚平. 基于分层聚类拍卖的集群UUV多目标分配方法[J]. 舰船科学技术, 2019, 41(5):70-75.
38. 金建海, 陈伟华, 张波, 等. UUV集群技术概述[C]. 2018年水下无人系统技术高峰论坛, 西安:西北工业大学, 2018.
39. Pachter M., Chandler P R. Challenges of autonomous control [J]. IEEE Control Systems, 1998, 18(4):92-97.
40. Chandler P, Rasmussen S, Pachter M. UAV Cooperative Path Planning [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. American Institute of Aeronautics and Astronautics, Denver, USA.
41. Chandler P R, Pachter M, Rasmussen S. UAV cooperative control [C]. Proceedings of the American Control Conference, Arlington, USA, 2001:50-55.
42. Boskovic J D, Prasanth R, Mehra R K. A multilayer control architecture for unmanned aerial vehicles [C]. Proceedings of the American Control Conference, Anchorage, USA, 2002:825-1830.
43. Boskovic J D, Prasanth R, Mehra R K. A multi-layer autonomous intelligent control architecture for unmanned aerial vehicles [J]. Journal of Aerospace Computing, Information, and Communication, 2004, 1(12):605-628.
44. Lee Y, William K, Milton A, et al. Hierarchical planning for large numbers of unmanned vehicles [C]. AIAA 1st Intelligent Systems Technical Conference, Chicago, USA, 2004.
45. Mclain T W, Beard R W. Coordination variables, coordination functions, and cooperative timing missions [J]. Journal of Guidance, Control, and Dynamics, 2005, 28(1):150-161.
46. 康小东, 李一平. 基于时延Petri网的多UUV系统的任务分配策略[J]. 仪器仪表学报, 2007, 28(S1):614-617.
47. Tsiogkas N, Papadimitriou G, Saigol Z, et al. Efficient multi-AUV cooperation using semantic knowledge representation for underwater archaeology missions [C], 2014 Oceans-St. John's. St. John's, USA, 2014:1-6.
48. Liang H, Kang F. A novel task optimal allocation approach based on Contract Net Protocol for Agent-oriented UUV swarm system modeling [J]. Optik, 2016, 127(8):3928-3933.
49. 朱大奇, 李欣, 颜明重. 多自治水下机器人多任务分配的自组织算法[J]. 控制与决策, 2012, 27(8):1201-1205.
50. Yan Z, Li Y, Zhou J, et al. Moving target following control of multi-AUVs formation based on rigid virtual leader-follower under ocean current [C]. Proceedings of 2015 34th Chinese Control Conference, Hangzhou, China, 2015:5901-5906.
51. 吴小平, 冯正平, 朱继懋. 多AUV队形控制的新方法[J]. 舰船科学技术, 2008, 30(2):128-134.
52. Rout R, Subudhi B. A backstepping approach for the formation control of multiple autonomous underwater vehicles using a leader – follower strategy [J]. Journal of Marine Engineering & Technology, 2016, 15(1):38-46.
53. 丁国华, 朱大奇. 多AUV主从式编队及避障控制方法[J]. 高技术通讯, 2014, 24(5):538-544.
54. 潘无为, 姜大鹏, 庞永杰, 等. 人工势场和虚拟结构相结合的多水下机器人编队控制[J]. 兵工学报, 2017, 38(2):326-334.
55. 傅珂杰, 曹许诺, 张桢, 等. 水下软体机器人柔性驱动方式及其仿生运动机理研究进展[J]. 科技导报, 2017, 35(18):44-51.
56. 王延杰, 郝牧宇, 张霖, 等. 基于智能驱动材料的水下仿生机器人发展综述[J]. 水下无人系统学报, 2019, 27(2):123-133.
57. Low K H, Yang J, Pattathil A P, et al. Initial prototype design and investigation of an undulating body by SMA [C]. Automation Science and Engineering, Shanghai, China, 2006.
58. Kamamichi N, Yamakita M, Asaka K, et al. A snake-like swimming robot using IPMC Actuator/Sensor [C]. Proceedings 2006 IEEE International Conference on Robotics and Automation. Orlando, USA:IEEE, 2006:1812-1817.
59. Rossi C, Colorado J, Coral W, et al. Bending continuous structures with SMAs:A novel robotic fish design [J]. Bioinspiration and Biomimetics, 2011, 6(4).
60. Marchese A D, Onal C D, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators [J]. Soft Robotics, 2014, 1(1):75-87.
61. Chen Z, Um T I, Bart-Smith H. A novel fabrication of ionic polymer-metal composite membrane actuator capable of 3-dimensional kinematic motions [J]. Sensors and Actuators A:Physical, 2011, 168(1):131-139.
62. Wang Z, Hang G, Wang Y, et al. Embedded SMA wire actuated biomimetic fin:a module for biomimetic underwater propulsion [J]. Smart Materials and Structures, 2008, 17(2).
63. Li T, Li G, Liang Y, et al. Fast-moving soft electronic fish [J]. Science Advances, 2017, 3(4).
64. Cai Y, Bi S, Zheng L. Design and experiments of a robotic fish imitating cow-nosed Ray [J]. Journal of Bionic Engineering, 2010, 7(2):120-126.
65. Guo S, Shi L, Ye X, et al. A new jellyfish type of underwater microrobot [C]. 2007 International Conference on Mechatronics and Automation. Harbin, China:IEEE, 2007:509-514.
66. Villanueva A, Smith C, Priya S. A biomimetic robotic jellyfish(Robojelly) actuated by shape memory alloy composite actuators [J]. Bioinspiration and Biomimetics, 2011, 6(3):036004.
67. 王扬威, 王振龙, 李健. 形状记忆合金丝驱动的仿生喷射推进器[J]. 哈尔滨工业大学学报, 2011, 43(9):33-37.
68. 闫勇程, 王扬威, 兰博文, 等. 水下仿生机器人CPG控制方法研究现状综述[J]. 微特电机, 2017, 045(011):72-77.
69. 徐亮. 基于云计算平台的机器鱼目标识别并行深度学习研究[D]. 北京:中国地质大学, 2018.
70. 林龙信. 仿生水下机器人的增强学习控制方法研究[D]. 长沙:国防科学技术大学, 2010.
简单、高效、低成本风洞测试方案
我国首个实用化无人机“蜂群”,中国电科单车发射48架巡飞弹
揭秘无人机自动机场 — 换电机场VS充电机场
守护能源互联网,云圣智能旗舰级车载无人机+全自动机场系统
埃洛克防务发布守望者、观测者
走进飞思无人科研平台,让无人智能科研更简单
上海特金推出国内首个城市级网格化无人机管控系统
窜入南海,侦察我军潜艇:中国强行没收美军水下无人机
长光禹辰 MS600 V2多光谱相机发布

工程师必备
- 项目客服
- 培训客服
- 平台客服
TOP
