岩石边坡倾倒破坏之块体倾倒(Block Toppling)数据集
1 引言
倾倒破坏(Toppling Failure) 这个词最初是由是Goodman and Bray在上世纪70年代提出, 意指一组平行节理的岩体朝着边坡方向发生的倾倒破坏。按照Goodman and Bray(1976)的分类, 倾倒破坏可以分为三种形式: (a) 块体倾倒(Block Toppling); (b) 屈曲倾倒(Flexural toppling); (c) 块体屈曲倾倒(Block flexure toppling). 如下图所示.
过去的公众号文章中多次讨论过倾倒破坏, 参看如下的链接.
屈曲倾倒破坏(flexural toppling failure)
岩土边坡的破坏类型(C3)(Failure types of slope)
除了上面所述的三种倾倒模式外, Wyllie and Mah(2004)也讨论过另一种倾倒模式,称之为次倾倒模型(Secondary toppling modes). 这种破坏模式主要由岩石风化以及人类活动引起. 最典型的情形是坡脚开挖引起边坡上部岩体发生倾倒破坏, 如下图(d)所示. 这种现象在修建山区高速公路时经常遇到, 特别是出现在水平层理的砂岩和页岩中.
2 倾倒破坏的分析方法
按照Goodman and Bray(1976)的分析, 倾倒破坏必须满足下面的条件:
其中,
---边坡面的倾角(Dip of slope face);
---不连续岩体的内摩擦角(Internal friction angle of plane/joint);
---不连续岩体的倾角(Dip of plane/joint)
如果不连续面倾到边坡面并且其走向小于30度, 那么就有可能倾倒破坏, 这可以使用赤平极射投影方法来求解, 如上图(e)所示. 一个更专业的求解方法是使用DIPS软件. 在此基础上, Rocscience发展了一个基于静力平衡的倾倒破坏分析软件RocTopple. 倾倒破坏最先进的分析方法是由Cundall提出的离散元法, 目前这样的分析方法有: UDEC,3DEC, PFC, Slope Model等。
3 块体倾倒数据集
在过去, 已经发展出一个屈曲倾倒数据集"flexural toppling failure", 在此基础上发展出目前的块体倾倒"Block Toppling"数据集. 这个数据集的内容主要包括在下面两个数据集中:
(1)\Step-Path-Failure(Discontinuity Persistence)
(2) \lattice spring model
进一步的优化还在进行之中.
4 参考文献
[1] Duncan C. Wyllie (2018) Rock Slope Engineering Civil Applications. Fifth Edition. 621p. (pdf)
[2] Guzman, R. S., et al. (2015). "Creep Modeling as a means to Interpret the Behavior of the West Wall of the Chuquicamata Open Pit." Integrating Innovations of Rock Mechanics: 11-18.
[3] Allen, R. H. and X. Duan (1995). "Effects of Linearizing on Rocking-Block Toppling." Journal of Structural Engineering-Asce 121(7): 1146-1149.
[4] Alejano, L. R., et al. (2018). "Block toppling stability in the case of rock blocks with rounded edges." Engineering Geology 234: 192-203.
[5] Tatone, B. S. A. and G. Grasselli (2010). "ROCKTOPPLE: A spreadsheet-based program for probabilistic block-toppling analysis." Computers & Geosciences 36(1): 98-114.
[6] Barla, G., M. B. Brunetto, G. Gerbaudo and A. Zaninetti. 1995. Physical and Mathematical Modelling of A Jointed Rock Mass for the Study of Block Toppling. In Fractured and Jointed Rock Masses. Proceedings, (Lake Tahoe, June 3-5, 1992), pp. 647-653. Rotterdam: A. A. Balkema.
[7] Brideau MA, Stead D (2010) Controls on block toppling using a three-dimensional distinct element approach. Rock Mech Rock Eng 43:241-260.
[8] Nichol, S. L., et al. (2002) Large-scale brittle and ductile toppling of rock slopes. Canadian Geotechnical Journal. 39: 773-788.
[9] Goodman, R. E. and J. W. Bray (1976). TOPPLING OF ROCK SLOPES.
[10] Lanaro, F., L. Jing, O. Stephansson, and G. Barla. 1997. "DEM modelling of laboratory ests of block toppling." International Journal of Rock Mechanics and Mining Sciences 34 (3-4):173-e1.
[11] Muraoka, R. and R. Hashimoto (2019). Improvement of the discontinuous deformation analysis for the rocking motion. 5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future, YSRM 2019.
[12] Vanneschi, C., et al. (2019). "Investigation and modeling of direct toppling using a three-dimensional distinct element approach with incorporation of point cloud geometry." Landslides 16(8): 1453-1465.
[13] Lanaro, F., et al. (1997). D.E.M. modelling of laboratory tests of block toppling. International Journal of Rock Mechanics and Mining Sciences. 34: 173.e171-173.e115.
[14] Scavia, C., et al. (1990). "Probabilistic Stability Analysis of Block Toppling Failure in Rock Slopes." International Journal of Rock Mechanics and Mining Sciences 27(6): 465-478.
[15] Wyllie, D. C. 1980. Toppling Rock Slope Failures, Examples of Analysis and Stabilization. Rock Mechanics, Vol.13, pp.89–98.
[16] Amatruda G, Castelli M, Rouiller JD. Block toppling mechanism due to progressive failure of rock bridges. Felsbau 2004; 22(2):8–15.