温控器的PID算法都有哪些?
关键词 | PID 控温器 算法
导读
老姜今天给大家介绍几种PID控制算法的温控器的控制特性、功能及主要应用场合,对大家合理选用用于温度控制的温控器具有很强实用性。
常用温控器控制算法包括常规PID、模糊控制、神经网络、Fuzzy-PID、模糊神经网络、遗传PID及广义预测等PID算法。
常规PID控制易于建立线性温度控制系统被控对象模型;模糊控制基于规则库,并以绝对或增量形式给出控制决策;神经网络控制采用数理模型模拟生物神经细胞结构,并用简单处理单元连接成复杂网络;Puzzy-PID为线性控制,且结合模糊与PID控制优点。
温度控制系统是变参数、有时滞和随机干扰的动态系统,为达到满意的控制效果,具有许多控制方法。
常见温度控制方法
01
常规经典PID控制算法的PID控制
PID控制即比例、积分、微分控制,其结构简单实用,常用于工业生产领域。
明显缺点是现场PID参数整定麻烦,易受外界干扰,对于滞后大的过程控制,调节时间过长。其控制算法需要预先建立模型,对系统动态特性的影响很难归并到模型中。在我国大多数PID调节器厂家生产的温控器均为常规经典PID控制算法。
02
模糊PID控制算法的PID控制
模糊控制(Fuzzy Control)是以模糊集合论、模糊语言变量及模糊逻辑推理为基础的计算机控制。
03
神经网络PID控制算法的PID控制
神经网络控制采用数理模型的方法模拟生物神经细胞结构,用简单处理单元连接形成各种复杂网络,并采用误差反向传播算法(BP)。
04
Fuzzy-PID控制算法的PID控制
模糊控制不需知道被控对象的精确模型,易于控制不确定对象和非线性对象。PID本质是线性控制。将模糊控制与PID结合多,以Fuzzy-PID混合控制为例,据给定值与测量值之偏差e选择智能控制器,根据e的变化选择控制方法,当|e|≤emin或|e|≥emax时,采用PID控制;当emin≤|e|≤emax时,采用Fuzzy控制。
05
神经网络PID控制算法的PID控制
在PID控制的基础上,加入神经网络控制器,构成神经网络PID温控器。
神经网络温控器NNC是前馈控制器,通过对PID温控器的输出进行学习,在线调整自己,目标是使反馈误差e(t) 或u(t)趋近于零,使自己逐渐在控制中占据主导地位,以减弱或最终消除反馈控制器的作用。
06
模糊神经网络PID控制算法的PID控制
将模糊逻辑与神经网络结合,采用神经网络模糊逻辑推理网络模型和快速的自学习算法,通过网络的离线训练和在线自学习使调节器具有自调整、自学习和自适应能力,达到模糊智能控制。
07
遗传PID控制算法的PID控制
遗传PID控制是将调节器参数构成基因型,将性能指标构成相应的适应度,利用遗传算法来整定调节器的最佳参数,不要求系统是否为连续可调,能否以显式表示。
遗传PID温控系统将测量值与给定值进行比较,用遗传控制算法来优化PID参数,然后将控制量输出,实现将PID参数串接构成完整染色体,从而构成遗传空间中的个体,过通过繁殖交叉和变异遗传操作生成新一代群体,经过多次搜索获得最大适应度值的个体。
08
广义预测PID控制算法的PID控制
预测控制(Predictive Control)是基于模型的计算机控制算法。其预测模型有脉冲响应模型、阶跃响应模型、CAMRMA模型和CARIMA模型。基于CARIMA模型的广义预测控制(GPC)是一种新型计算机PID控制算法。
常见温度控制方法的对比分析
通过上述PID控制算法的原理分析,下表给出各种温度控制特性与控制器应用场合的情况。
将线性与非线性控制相结合。使温度能满足用户的精度要求是温控系统的最终目的。在实际应用中,根据具体的应用场合、不同的加热对象、不同的控制要求和控制精度,选择不同PID控制算法的温控器及控制方式。