这样解读PID算法,有点意思~
啥是PID?
那么问题来了:
比如,我想控制一个“热得快”,让一锅水的温度保持在50℃,这么简单的任务,为啥要用到微积分的理论呢。
你一定在想:
这不是so easy嘛~ 小于50度就让它加热,大于50度就断电,不就行了?几行代码用Arduino分分钟写出来。
没错~在要求不高的情况下,确实可以这么干~ But!如果换一种说法,你就知道问题出在哪里了:
如果我的控制对象是一辆汽车呢?
要是希望汽车的车速保持在50km/h不动,你还敢这样干么。设想一下,假如汽车的定速巡航电脑在某一时间测到车速是45km/h。它立刻命令发动机:加速!结果,发动机那边突然来了个100%全油门,嗡的一下,汽车急加速到了60km/h。这时电脑又发出命令:刹车!结果,吱...............哇............(乘客吐)
所以,在大多数场合中,用“开关量”来控制一个物理量,就显得比较简单粗暴了。有时候,是无法保持稳定的。因为单片机、传感器不是无限快的,采集、控制需要时间。
而且,控制对象具有惯性。比如你将一个加热器拔掉,它的“余热”(即热惯性)可能还会使水温继续升高一小会。
这时,就需要一种『算法』:
-
它可以将需要控制的物理量带到目标附近 -
它可以“预见”这个量的变化趋势 -
它也可以消除因为散热、阻力等因素造成的静态误差 -
....
于是,当时的数学家们发明了这一历久不衰的算法 —— 这就是PID。
你应该已经知道了,P,I,D是三种不同的调节作用,既可以单独使用(P,I,D),也可以两个两个用(PI,PD),也可以三个一起用(PID)。这三种作用有什么区别呢?
我们先只说PID控制器的三个最基本的参数:kP,kI,kD。
P就是比例的意思。它的作用最明显,原理也最简单。我们先说这个:需要控制的量,比如水温,有它现在的『当前值』,也有我们期望的『目标值』。
-
当两者差距不大时,就让加热器“轻轻地”加热一下。 要是因为某些原因,温度降低了很多,就让加热器“稍稍用力”加热一下。
-
要是当前温度比目标温度低得多,就让加热器“开足马力”加热,尽快让水温到达目标附近。
实际写程序时,就让偏差(目标减去当前)与调节装置的“调节力度”,建立一个一次函数的关系,就可以实现最基本的“比例”控制了~
kP越大,调节作用越激进,kP调小会让调节作用更保守。要是你正在制作一个平衡车,有了P的作用,你会发现,平衡车在平衡角度附近来回“狂抖”,比较难稳住。
如果已经到了这一步 —— 恭喜你!离成功只差一小步了~
D的作用更好理解一些,所以先说说D,最后说I。
刚才我们有了P的作用。你不难发现,只有P好像不能让平衡车站起来,水温也控制得晃晃悠悠,好像整个系统不是特别稳定,总是在“抖动”。
你心里设想一个弹簧:现在在平衡位置上。拉它一下,然后松手。这时它会震荡起来。因为阻力很小,它可能会震荡很长时间,才会重新停在平衡位置。
请想象一下:要是把上图所示的系统浸没在水里,同样拉它一下 :这种情况下,重新停在平衡位置的时间就短得多。
我们需要一个控制作用,让被控制的物理量的“变化速度”趋于0,即类似于“阻尼”的作用。
因为,当比较接近目标时,P的控制作用就比较小了。越接近目标,P的作用越温柔。有很多内在的或者外部的因素,使控制量发生小范围的摆动。
D的作用就是让物理量的速度趋于0,只要什么时候,这个量具有了速度,D就向相反的方向用力,尽力刹住这个变化。
kD参数越大,向速度相反方向刹车的力道就越强。如果是平衡小车,加上P和D两种控制作用,如果参数调节合适,它应该可以站起来了~欢呼吧。
等等,PID三兄弟好像还有一位。看起来PD就可以让物理量保持稳定,那还要I干嘛?因为我们忽视了一种重要的情况:
还是以热水为例。假如有个人把我们的加热装置带到了非常冷的地方,开始烧水了。需要烧到50℃。在P的作用下,水温慢慢升高。直到升高到45℃时,他发现了一个不好的事情:天气太冷,水散热的速度,和P控制的加热的速度相等了。这可怎么办?
-
P兄这样想:我和目标已经很近了,只需要轻轻加热就可以了。 -
D兄这样想:加热和散热相等,温度没有波动,我好像不用调整什么。
设置一个积分量。只要偏差存在,就不断地对偏差进行积分(累加),并反应在调节力度上。
这样一来,即使45℃和50℃相差不太大,但是随着时间的推移,只要没达到目标温度,这个积分量就不断增加。系统就会慢慢意识到:还没有到达目标温度,该增加功率啦!
到了目标温度后,假设温度没有波动,积分值就不会再变动。这时,加热功率仍然等于散热功率。但是,温度是稳稳的50℃。
kI的值越大,积分时乘的系数就越大,积分效果越明显。所以,I的作用就是,减小静态情况下的误差,让受控物理量尽可能接近目标值。
I在使用时还有个问题:需要设定积分限制。防止在刚开始加热时,就把积分量积得太大,难以控制。