在 COMSOL 中模拟 4 种常见的扬声器驱动器
扬声器驱动器的类型
-
传统的动态换能器,利用施加在载流音圈上的洛伦兹力来移动音圈和附属的振膜。它们也被称为动圈换能器,是当今最流行的扬声器驱动器类型。 -
主要用于助听器和入耳式设备的平衡电枢接收器,其运动是由磁体之间存在的麦克斯韦应力引起的。它们属于动铁扬声器类别,是最早发明的电动扬声器类型。 -
使用压电材料的压电驱动器,例如某些类型的晶体,在外加电场产生的内部产生的机械应力下变形。它们经常用于电子设备中产生声音,并且在一些较便宜的扬声器系统中也用作高音扬声器。 -
静电驱动器,利用施加在悬挂在两个穿孔金属片之间的又大又薄的导电隔膜板上的静电力。由于具有低失真度和高质量清晰度,它们一直受到发烧友的欢迎,并且通常比其他类型更昂贵。
洛伦兹耦合
动圈换能器使用洛伦兹力来触发振动。
在扬声器驱动器–频域分析教程示例中,使用 洛伦兹耦合特征对动态动圈换能器进行建模。
磁力作用力
平衡电枢接收器,利用磁体之间的麦克斯韦应力来触发振动。
磁机械力耦合 特征用于平衡电枢传感器的完整振动电声仿真。
压电效应
一种由四个三角形膜片组成的压电 MEMS 扬声器,利用压电效应产生振动。在厚度方向上应用较大的比例以进行可视化。
压电 MEMS 扬声器教程中使用了压电效应耦合特征。
机电力
静电扬声器驱动器由位于两个穿孔金属板之间的薄塑料隔膜组成,利用带电体之间存在的麦克斯韦应力来触发振动。
添加声学接口模拟声辐射
-
声–结构边界:这个功能用于将压力声学模型耦合到任何结构组件。包括基于 FEM 的声学接口和基于 BEM 的声学接口。前面提到的案例教程,即扬声器驱动器-频域分析、扬声器驱动器-瞬态分析和平衡电枢传感器都是使用基于 FEM 的压力声学接口的示例。我们可以在敞开式扬声器教程模型中的看到将基于 BEM 的压力声学接口与结构振动耦合的示例。 -
声–结构边界,时域显式:这个特征专用于使用间断伽辽金法和时域显式求解器求解的瞬态声-结构相互作用问题。它与压电效应、时域显式耦合功能兼容,用于对来自压电扬声器驱动器的声辐射进行瞬态分析。有关演示,请参阅使用压电换能器的超声波流量计教程模型。 -
热黏性声–结构边界:这项功能用于将热黏性声学接口与任何结构组件耦合。当黏性损失和热传导由于边界层的存在而变得重要时,需要热黏性声学模型来准确模拟狭窄流体通道中的声学。这在压电 MEMS 扬声器和静电扬声器驱动器教程模型中得到了例证。
为大变形添加移动网格特征
下一步
-
扬声器驱动器—频域分析 -
扬声器驱动器-瞬态分析 -
平衡电枢传感器 -
压电 MEMS 扬声器 -
静电扬声器驱动器
点赞 7 评论 3 收藏 6