高低浓度氨氮废水、高盐废水处理工艺


污水中因氨氮浓度不同分为高低浓度氨氮废水,在实际应用中氨氮浓度大于500PPM的废水需要预处理(称为高氨氮废水),然后配合低氨氮废水的处理工艺进行最后的脱氮,因高氨氮废水与低氨氮废水采用的工艺不同。


一、高浓度氨氮废水处理技术

1

吹脱法


将空气通入废水中,使废水中溶解性气体和易挥发性溶质由液相转入气相,使废水得到处理的过程称为吹脱,常见的工艺流程见图1。


高低浓度氨氮废水、高盐废水处理工艺的图1


吹脱法的基本原理是气液相平衡和传质速度理论。将氨氮废水pH 调节至碱性,此时,铵离子转化为氨分子,再向水中通入气体,使其与液体充分接触,废水中溶解的气体和挥发性氨分子穿过气液界面,转至气相,从而达到去除氨氮的目的。常用空气或水蒸气作载气,前者称为空气吹脱,后者称为蒸汽吹脱。


蒸汽吹脱法效率较高,氨氮去除率能达到90%以上,但能耗较大,一般应用在炼钢、化肥、石油化工等行业,其优点是可回收利用氨,经过吹脱处理后可回收到氨质量分数达30%以上的氨水。空气吹脱法的效率虽比蒸汽法的低,但能耗低、设备简单、操作方便。在氨氮总量不高的情况下,采用空气吹脱法比较经济,同时可用硫酸作吸收剂吸收吹脱出的氨氮,生成的硫酸铵可制成化肥。


但是在大规模的氨吹脱-汽提塔生产过程中, 产生水垢是较棘手的问题。通过安装喷淋水系统可有效解决软质水垢问题,可是对于硬质水垢,喷淋装置也无法消除。此外,低温时氨氮去除率低,吹脱的气体形成二次污染。因此,吹脱法一般与其他氨氮废水处理方法联合运用,用吹脱法对高浓度氨氮废水进行预处理。最佳吹脱工艺条件,见表1。


高低浓度氨氮废水、高盐废水处理工艺的图2


通过对比分析表1可以得出:


(1)吹脱法普遍适宜的pH 在11附近;

(2)考虑经济因素,温度在30~40℃附近较为可行,且处理率高;

(3)吹脱时间为3h左右;

(4)气液比在5000∶1 左右效果较好,且吹脱温度越高,气液比越小;

(5)吹脱后废水的浓度可降低到中低浓度;

(6)脱氮率基本保持90%以上。尽管吹脱法可以将大部分氨氮脱除, 但处理后的废水中氨氮仍然高达100 mg/L 以上,无法直接排放,还需要后续深度处理。


2

鸟粪石法(磷酸铵镁沉淀法)


化学沉淀法的原理,是向氨氮污水中投加含Mg2+ 和PO43- 的药剂, 使污水中的氨氮和磷以鸟粪石(磷酸铵镁)的形式沉淀出来,同时回收污水中的氮和磷。


化学沉淀法的优点主要表现在:工艺设计操作相对简单;反应稳定,受外界环境影响小,抗冲击能力强;脱氮率高,效果明显,生成的磷酸铵镁可作为无机复合肥使用,解决了氮的回收和二次污染的问题,具有良好的经济和环境效益。磷酸铵镁沉淀法适用于处理氨氮浓度较高的工业废水,表2总结了一些使用化学沉淀法处理氨氮废水的案例。


高低浓度氨氮废水、高盐废水处理工艺的图3


通过对表2的比较,磷酸铵镁沉淀法处理氨氮废水的适宜条件是:pH 约为9.0,n(P)∶n(N)∶n(Mg)在1∶1∶1.2 左右,磷酸铵镁沉淀法的脱氮率能维持在较高水平,普遍能够达到90%以上。



二、低浓度氨氮工业废水处理技术


废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵、氯化铵等。氨氮是造成水体富营养化的重要因素之一, 对这类污水进行回收利用时还会对管道中的金属产生腐蚀作用, 缩短设备和管道的寿命,增加维护成本。目前工业上常用于处理低浓度氨氮的技术主要有吸附法、折点氯化法、生物法、膜技术等。


1

吸附法


吸附是一种或几种物质(称为吸附物)的浓度在另一种物质(称为吸附剂)表面上自动发生变化的过程, 其实质是物质从液相或气相到固体表面的一种传质现象。


吸附法是处理低浓度氨氮废水较有发展前景的方法之一。吸附法常利用多孔性固体作为吸附剂,根据吸附原理不同可分为物理吸附、化学吸附和交换吸附。处理低浓度氨氮废水较为理想的是离子交换吸附法,它属于交换吸附方法的一种,利用吸附剂上的可交换离子与废水中的NH4+ 发生交换并吸附NH3 分子以达到去除水中氨的目的, 这是一个可逆过程, 离子间的浓度差和吸附剂对离子的亲和力为吸附过程提供动力。


具有良好吸附性能且常用的吸附剂有:沸石、活性炭、煤炭、离子交换树脂等,根据其吸附原理的不同,这些吸附材料对不同吸附物的吸附效果不同。


该法一般只适用于低浓度氨氮废水, 而对于高浓度的氨氮废水, 使用吸附法会因吸附剂更换频繁而造成操作困难, 因此需要结合其他工艺来协同完成脱氮过程。供吸附法使用的吸附剂很多, 但不同吸附剂对废水中氨氮的吸附量却有很大不同, 表3 对比了部分吸附剂的吸附效果。


高低浓度氨氮废水、高盐废水处理工艺的图4


由表3可以看出,对于传统的吸附剂如沸石、交换树脂等, 其对氨氮的处理率较高, 一般能达到90%以上。


2

折点氯化法


折点氯化法是污水处理工程中常用的一种脱氮工艺,其原理是将氯  气通入氨氮废水中达到某一临界点,使氨氮氧化为氮气的化学过程,其反应方程式为:


NH4++1.5HOCl→0.5N2+1.5H2O+2.5H++1.5Cl-


折点氯化法的优点为:处理效率高且效果稳定,去除率可达100%;该方法不受盐含量干扰,不受水温影响,操作方便;有机物含量越少时氨氮处理效果越好,不产生沉淀;初期投资少,反应迅速完全;能对水体起到杀菌消毒的作用。


但是折点氯化法仅适用于低浓度废水的处理, 因此多用于氨氮废水的深度处理。该方法的缺点是:液  氯消耗量大,费用较高,且对液  氯的贮存和使用的安全要求较高, 反应副产物氯胺和氯代有机物会对环境造成二次污染。



三、生物法


生物法是指废水中的氨氮在各种微生物作用下,通过硝化、反硝化等一系列反应最终生成氮气,从而达到去除的目的,其脱氮途径如图2 所示。对于可生化性高的废水(BOD/COD>0.3),氨氮可通过生物法脱除。


高低浓度氨氮废水、高盐废水处理工艺的图5


生物法具有操作简单、效果稳定、不产生二次污染且经济的优点,其缺点为占地面积大,处理效率易受温度和有毒物质等的影响且对运行管理要求较高。同时,在工业运用中应考虑某些物质对微生物活动和繁殖的抑制作用。此外,高浓度的氨氮对生物法硝化过程具有抑制作用, 因此当处理氨氮废水的初始质量浓度<300 mg/L 时,采用生物法效果较好。


1

传统生物硝化反硝化技术


传统生物硝化反硝化脱氮处理过程包括硝化和反硝化两个阶段。硝化过程是指在好氧条件下,在硝酸盐和亚硝酸盐菌的作用下, 氨氮可被氧化成硝酸盐氮和亚硝酸盐氮;再通过缺氧条件,反硝化菌将硝酸盐氮和亚硝酸盐氮还原成氮气, 从而达到脱氮的目的。


传统生物硝化反硝化法中,较成熟的方法有A/O 法、A2/O 法、SBR 序批式处理法、接触氧化法等。


它们具有效果稳定、操作简单、不产生二次污染、成本较低等优点。但该法也存在一些弊端,如必须补充相应的碳源来配合实现氨氮的脱除, 使运行费用增加;碳氮比较小时,需要进行消化液回流,增加了反应池容积和动力消耗;硝化细菌浓度低,系统投碱量大等。


2

新型生物脱氮技术


1)短程硝化反硝化技术


短程硝化反硝化是在同一个反应器中,先在有氧的条件下,利用氨氧化细菌将氨氧化成亚硝酸盐,阻止亚硝酸盐进一步氧化,然后直接在缺氧的条件下, 以有机物或外加碳源作为电子供体,将亚硝酸盐进行反硝化生成氮气。


短程硝化反硝化与传统生物脱氮相比具有以下优点:对于活性污泥法,可节省25%的供氧量,降低能耗;节省碳源,一定情况下可提高总氮的去除率;提高了反应速率, 缩短了反应时间, 减少反应器容积。但由于亚硝化细菌和硝化细菌之间关系紧密,每个影响因素的变化都同时影响到两类细菌, 而且各个因素之间也存在着相互影响的关系, 这使得短程硝化反硝化的条件难以控制。


2)同时硝化反硝化技术


当硝化与反硝化在同一个反应器中同时进行时, 即为同时硝化反硝化(SND)。废水中溶解氧受扩散速度限制,在微生物絮体或者生物膜的表面,溶解氧浓度较高,利于好氧硝化菌和氨化菌的生长繁殖,越深入絮体或膜内部,溶解氧浓度越低,形成缺氧区,反硝化细菌占优势,从而形成同时硝化反硝化过程。


有实验表明当DO 为1mg/L,C/N=30,pH=7.2 时,COD、NH4+-N、TN 去除率分别为96%、95%、92%, 并发现在一定的范围内,升高或降低反应器内DO 浓度后,TN 去除率都会下降。同时硝化反硝化法节省反应器, 缩短了反应时间,且能耗低、投资省。


3)厌氧氨氧化技术


厌氧氨氧化是指在缺氧或厌氧条件下,微生物以NH4+为电子受体,以NO2- 或NO3- 为电子供体进行的将NH4+。


厌氧氨氧化技术可以大幅度地降低硝化反应的充氧能耗,免去反硝化反应的外源电子供体,可节省传统硝化反硝化过程中所需的中和试剂, 产生的污泥量少。但目前为止,其反应机理、参与菌种和各项操作参数均不明确。



四、膜技术



1

反渗透技术


反渗透技术是在高于溶液渗透压的压力作用下,借助于半透膜对溶质的选择截留作用,将溶质与溶剂分离的技术,具有能耗低、无污染、工艺先进、操作维护简便等优点。利用反渗透技术处理氨氮废水的过程中, 设备给予足够的压力,水通过选择性膜析出,可用作工业纯水,而膜另一侧氨氮溶液的浓度则相应增高,成为可以被再次处理和利用的浓缩液。在实际操作中,施加的反渗透压力与溶液的浓度成正比, 随着氨氮浓度的升高,反渗透装置所需的能耗就越高,而效率却是在下降。


2

电渗析法


电渗析是在外加直流电场的作用下, 利用离子交换膜的选择透过性, 使离子从电解质溶液中分离出来的过程。电渗析法可高效地分离废水中的氨氮,并且该方法前期投入小,能量和药剂消耗低,操作简单,水的利用率高,无二次污染副产物。


采用自制电渗析设备对进水电导率为2920 μS/cm, 氨氮质量浓度为534.59 mg/L 的氨氮废水进行处理,通过实验得到在电渗析电压为55V,进水流量为24 L/h 这一最佳工艺参数条件下,可对实验用水有效脱氮的结论,出水氨氮质量浓度为13 mg/L。


3

高低浓度氨氮废水的处理方法比较


不同氨氮废水处理方法优缺点比较见表4。


高低浓度氨氮废水、高盐废水处理工艺的图6


通过对以上几种不同方法的论述, 可以看出目前针对工业废水中高浓度氨氮的处理方法主要使用物理化学方法做预处理, 再选择其他方法进行后续处理,虽能取得较好的处理效果,但仍存在结垢、二次污染的问题。


对低浓度的氨氮废水较常用的方法为化学法和传统生物法, 其中化学法的一些处理技术还不成熟,未在实际生产中应用,因此还无法满足工业对低浓度氨氮废水深度处理的要求;生物法能较好地解决二次污染问题, 且能达到工业对低浓度氨氮废水深度处理的要求, 但目前对微生物的选种和驯化还不完全成熟。



五、高盐废水处理技术

高盐废水是指含有有机物和至少3.5%(质量浓度)的总溶解固体物(TDS)的废水。这种废水来源广泛,一类是化工、制药、石油、造纸、奶制品加工、食品罐装等多种工业生产过程中,会排放大量废水,水中不但含有很多高浓度的有机污染物,伴随着大量钙、钠、氯、硫酸根等离子。另一类是为了充分利用水资源,部分沿海城市直接利用海水作为工业生产用水或是冷却水。

 处理高盐废水通常是“预处理—蒸发浓缩结晶除盐”工艺。根据具体水量、水质、出水要求、投资、运行成本及技术观念,不同情况下选择不同的预处理工艺、技术设备和蒸发浓缩结晶除盐工艺。总结以下几点工艺:

1.加药混凝—气浮、沉淀传统预处理工艺

       当含盐原水 COD 浓度在 5000mg/L以下,而且对结晶盐质量没有要求时,传统工艺是将含盐原水经过“调节—加药混凝—气浮、沉淀” 预处理后,再进入“蒸发浓缩结晶除盐系统”。该方法投资少,运行成本低,但结晶盐质差,难销售。

2.Fenton或电—Fenton 催化氧化预处理工艺

       Fenton 试剂含有 H2O2和 Fe2+,对废水中有机污染物具有很强的氧化能力,且反应速度快,投资低,出水经沉淀净化后可实现预处理目的。

        但 Fenton 或电——Fenton 催化氧化工艺要求特定的反应条件:pH 值 2——4,而且产生较多含铁污泥,出水会有颜色。当含盐原水 p H 值偏低时使用较经济,否则“加酸降 p H,加碱中和”的过程增加运行成本。COD浓度在 10000 mg/L左右尚好,如过高,就要多级氧化净化处理,Fenton 工艺就无优势了。

3.双膜法预处理工艺

      先利用孔径在 20——2000Ao(10-6.5-10-4.5cm)的半透膜进行超滤,可截留蛋白质、各类酶、细菌等胶体物质和大分子物质在浓缩液中,而水、溶剂、小分子和形成盐的离子则可通过膜,进入透过水中。

        由于透过水水量减少,而盐量没变,所以透过水含盐浓度增加。这时再用孔径在 1——20Ao(10-7.5-10-6.5cm)的半透膜进行反渗透,无机盐、糖类、氨基酸、BOD、COD 等被截留在浓缩液中,只有水和溶剂进入透过水中,盐在浓缩液中浓度进一步增加,送去蒸发结晶除盐。

双膜法除盐的优势在于大幅度降低了蒸发结晶除盐的水量,从而明显降低蒸发结晶除盐的运行成本和投资。但要注意以下问题:

       超滤前要调 p H 为中性、去硬度、去 SS 净化等;

      原水含盐量在 5000mg/L以下,否则透过水量就太低了,脱盐率也降低;

       当含盐原水水量大时投资会很高;

       由于膜要经常水洗、酸洗、碱洗保护,膜的使用寿命也有限,运行成本也是比较高的;

       最大的问题是截留下的更高污染的浓缩液怎么办?!         如能提取有价物质或有大量可生化废水稀释一起处理还好,否则,如回用会增加污染积累;如焚烧,则投资和运行成本极高;

       对含盐量超过 5000mg/L的废水可直接蒸发结晶除盐了,再用膜法没什么意义,但是要提醒的是:蒸发结晶除盐前还是要进行有效预处理的。

4.臭氧/催化/混凝复合预处理工艺

        以臭氧为强氧化剂并复合催化剂和混凝剂,在特定的环境中进行充分的交联协同反应,可使废水中的环链和长链断开,提高废水的可生化性。

        创造合适的反应条件,也可充分地氧化废水中溶解的有机污染物,破坏废水中的胶体、发色团、发臭团,去除废水中的 COD、BOD、SS、异味和一些颜色,但不能去除盐份和较多的氨氮。

        由于以臭氧为强氧化剂并复合氧化性质的催化剂和混凝剂,所以在整个去除有机污染物的过程中产生的泥量很少,而且反应环境、形式与过程都比 Fenton工艺简单的多,可多级串联运行,确保岀水达到预期指标。

含盐废水预处理工艺该如何选择:

       水量较大且含盐量低于 5000mg/L 的废水可首选双膜法,浓缩以后再除盐;

       含盐原水 p H 值为 2——4 的含盐原水可首选 Fenton工艺预处理;

       pH 值5以上的高浓 COD 且含盐量大于 5000mg/L的含盐废水可选臭氧/催化/混凝复合预处理工艺;

       含盐原水色度高或氨氮高,则必须单独进行脱色和脱氨处理;

        或者几种方法结合进行预处理。

5.蒸发结晶除盐工艺

       对于含盐溶液,由于其溶解度的不同,其从溶液中结晶析出有两种方案,第一是对于溶解度随温度不大的物系,一般采用蒸发溶剂的方法,二是溶解度随温度变化较大的物系,一般采用冷却溶液的方法。

       含盐废水一般均为多种盐的混合物,由于同离子效应的存在,其溶解度曲线和溶液的沸点均不同于单一物系,一般其饱和溶解度要低于单一物系的饱和溶解度,沸点高于同浓度下单一物系的沸点。所以要准确掌握多组分盐的溶解度和沸点必须通过实验求得,这是蒸发除盐设计的关键所在。

       对于蒸发除盐浓缩终点的设计,主要取决于后续分离设备的匹配,选用卧式螺旋卸料离心机,其出蒸发器溶液含固量应为 10%左右,选用双级活塞推料料离心机,其出蒸发器溶液含固量为 50%左右。
       蒸发结晶器的设计是蒸发除盐装置能否正常运行的关键,设计时要考虑以下因数:晶核的生成、过饱和度的控制、短路温差的消除、大颗粒盐的即时分离、强制循环的方式和流速、气液分离强度等。

 

默认 最新
当前暂无评论,小编等你评论哦!
点赞 评论 收藏 2
关注