干货·详解永磁电机
永磁电机什么是?
永磁电机采用永磁体生成电机的磁场,无需励磁线圈也无需励磁电流,效率高结构简单,是很好的节能电机,随着高性能永磁材料的问世和控制技术的迅速发展.永磁电机的应用将会变得更为广泛。
01
永磁电机的发展历史
永磁电机的发展同永磁材料的发展密切相关。我国是世界上最早发现永磁材料的磁特性并把它应用于实践的国家,两千多年前,我国利用永磁材料的磁特性制成了指南针,在航海、军事等领域发挥了巨大的作用,成为我国古代四大发明之一。
19世纪20年代出现的世界上第一台电机就是由永磁体产生励磁磁场的永磁电机。但当时所用的永磁材料是天然磁铁矿石(Fe3O4),磁能密度很低,用它制成的电机体积庞大,不久被电励磁电机所取代。
随着各种电机迅速发展的需要和电流充磁器的发明,人们对永磁材料的机理、构成和制造技术进行了深入研究,相继发现了碳钢、钨钢(最大磁能积约2.7 kJ/m3)、钴钢(最大磁能积约7.2 kJ/m3)等多种永磁材料。特别是20世纪30年代出现的铝镍钴永磁(最大磁能积可达85 kJ/m3)和50年代出现的铁氧体永磁(最大磁能积现可达40 kJ/m3),磁性能有了很大提高,各种微型和小型电机又纷纷使用永磁体励磁。永磁电机的功率小至数毫瓦,大至几十千瓦,在军事、工农业生产和日常生活中得到广泛应用,产量急剧增加。相应地,这段时期在永磁电机的设计理论、计算方法、充磁和制造技术等方面也都取得了突破性进展,形成了以永磁体工作图图解法为代表的一套分析研究方法。但是,铝镍钴永磁的矫顽力偏低(36~160 kA/m),铁氧体永磁的剩磁密度不高(0.2~0.44 T),限制了它们在电机中的应用范围。一直到20世纪60年代和80年代,稀土钴永磁和钕铁硼永磁(二者统称稀土永磁)相继问世,它们的高剩磁密度、高矫顽力、高磁能积和线性退磁曲线的优异磁性能特别适合于制造电机,从而使永磁电机的发展进入一个新的历史时期。
02
永磁电机的特点及应用
与传统的电励磁电机相比,永磁电机,特别是稀土永磁电机具有结构简单,运行可靠;体积小,质量轻;损耗小,效率高;电机的形状和尺寸可以灵活多样等显着优点。因而应用范围极为广泛,几乎遍及航空航天、国防、工农业生产和日常生活的各个领域。下面介绍几种典型永磁电机的主要特点及其主要应用场合。
1、 稀土永磁发电机永磁同步发电机与传统的发电机相比不需要集电环和电刷装置,结构简单,减少了故障率。采用稀土永磁后还可以增大气隙磁密,并把电机转速提高到最佳值,提高功率质量比。当代航空、航天用发电机几乎全部采用稀土永磁发电机。其典型产品为美国通用电气公司制造的150 kVA 14 极 12 000 r/min~21 000 r/min和100 kVA 60 000 r/min的稀土钴永磁同步发电机。国内研发的第一台稀土永磁电机即为3 kW 20 000 r/min的永磁发电机。
永磁发电机也用作大型汽轮发电机的副励磁机,80年代我国研制成功当时世界容量最大的40 kVA~160 kVA稀土永磁副励磁机,配备200 MW~600 MW汽轮发电机后大大提高电站运行的可靠性。
目前,独立电源用的内燃机驱动小型发电机、车用永磁发电机、风轮直接驱动的小型永磁风力发电机正在逐步推广。
2 、高效永磁同步电动机永磁同步电动机与感应电动机相比,不需要无功励磁电流,可以显着提高功率因数(可达到1,甚至容性),减少了定子电流和定子电阻损耗,而且在稳定运行时没有转子铜耗,进而可以减小风扇(小容量电机甚至可以去掉风扇)和相应的风摩损耗,效率比同规格感应电动机可提高2~8个百分点。而且,永磁同步电动机在25%~120%额定负载范围内均可保持较高的效率和功率因数,使轻载运行时节能效果更为显着。这类电机一般都在转子上设置起动绕组,具有在某一频率和电压下直接起动的能力。目前主要应用在油田、纺织化纤工业、陶瓷玻璃工业和年运行时间长的风机水泵等领域。
我国自主开发的高效高起动转矩钕铁硼永磁同步电动机在油田应用中可以解决“大马拉小车”问题,起动转矩比感应电动机大50%~100%,可以替代大一个机座号的感应电动机,节电率在20%左右。
纺织化纤行业中负载转动惯量大,要求高牵入转矩。合理设计永磁同步电动机的空载漏磁系数、凸极比、转子电阻、永磁体尺寸和定子绕组匝数可以提高永磁电机的牵入性能,促使它应用于新型的纺织和化纤工业。
大型电站、矿山、石油、化工等行业所用几百千瓦和兆瓦级风机、泵类用电机是耗能大户,而目前所用电机的效率和功率因数较低,改用钕铁硼永磁后不仅提高了效率和功率因数,节约能源,且为无刷结构,提高了运行的可靠性。目前1 120kW永磁同步电动机是世界上功率最大的异步起动高效稀土永磁电机,效率高于96.5%(同规格电机效率为95%),功率因数0.94,可以替代比它大1~2个功率等级的普通电动机。
3 、交流伺服永磁电动机和无刷直流永磁电动机现在越来越多地用变频电源和交流电动机组成交流调速系统来替代直流电动机调速系统。在交流电动机中,永磁同步电机的转速在稳定运行时与电源频率保持恒定的关系,使得它可直接用于开环的变频调速系统。这类电机通常由变频器频率的逐步升高来起动,在转子上可以不设置起动绕组,而且省去了电刷和换向器,维护方便。
变频器供电的永磁同步电动机加上转子位置闭环控制系统构成自同步永磁电动机,既具有电励磁直流电动机的优异调速性能,又实现了无刷化,主要应用于高控制精度和高可靠性的场合,如航空、航天、数控机床、加工中心、机器人、电动汽车、计算机外围设备等。
现已研制成宽调速范围、高恒功率调速比的钕铁硼永磁同步电动机和驱动系统,调速比高达1:22 500,极限转速达到9 000 r/min。永磁同步电动机高效、小振动、低噪声、高转矩密度的特点在电动车、机床等驱动装置中是最理想的电动机。
随着人民生活水平的不断提高,对家用电器的要求越来越高。例如家用空调器,既是耗电大件,又是噪声的主要来源,其发展趋势是使用能无级调速的永磁无刷直流电动机。它既能根据室温的变化,自动调整到适宜的转速下长时间运转,减少噪声和振动,使人的感觉更为舒适,还比不调速的空调器节电1/3。其他如电冰箱、洗衣机、除尘器、风扇等也在逐步改用无刷直流电动机。
4 、永磁直流电动机直流电动机采用永磁励磁后,既保留了电励磁直流电动机良好的调速特性和机械特性,还因省去了励磁绕组和励磁损耗而具有结构工艺简单、体积小、用铜量少、效率高等特点。因而从家用电器、便携式电子设备、电动工具到要求有良好动态性能的精密速度和位置传动系统都大量应用永磁直流电动机。500 W以下的微型直流电动机中,永磁电机占92%,而10 W以下的永磁电机占99%以上。
目前,我国汽车行业发展迅速,汽车工业是永磁电机的最大用户,电机是汽车的关键部件,一辆超豪华轿车中,各种不同用途的电机达70余台,其中绝大部分是低压永磁直流微电机。汽车、摩托车用起动机电动机,采用钕铁硼永磁并采用减速行星齿轮后,可使起动机电动机的质量减轻一半。
永磁电机的分类
永磁电机种类繁多。根据电机功能大致可分为永磁发 电机和永磁电动机两大类 。
永磁 电动机又可分为永磁直流电动机和永磁交流电动机。而永磁交流电动机指的是带有永磁转子的多相同步电动机,所以常被称为永磁 同步电动机 (PMSM)。
永磁直流电动机如果按有无 电剧和 换向器来分.又可分为永磁有刷直流电动机和永磁无刷 直流 电动机 (BLDCM )。
当今世界,现代电力电子学理论和技术正在大发展.电力电子器件,如 MOSFET、IGBT、MCT 等的不断问世,控制装置发生根本性变化。自 1971年 F·BlascEke提出交流电机矢量控制原理之后,矢量控制技术的发展开创 了交流伺服传动控制 的新纪元,丽各种高性能微处理器的不断推 出,进一步加速了交流伺服系统取代直流伺服系统的发展。交辩I伺服系统取代直流伺服系统已成必然趋势。然而,具有正弦波反电势的永磁同步电动机 (PMSM)和具有梯形波反电势的无刷直流电动机 (BLIX~)因其本身卓越 的性能必将会成为发展高性能交流伺服系统的主流 。
03
永磁电机的相关注意事项
1 、磁路结构和设计计算
为了充分发挥各种永磁材料的磁性能,特别是稀土永磁的优异磁性能,制造出性价比高的永磁电机,就不能简单套用传统的永磁电机或电励磁电机的结构和设计计算方法,必须建立新的设计概念,重新分析和改进磁路结构。随着计算机硬件和软件技术的迅猛发展,以及电磁场数值计算、优化设计和仿真技术等现代化设计方法的不断完善,经过电机学术界和工程界的共同努力,现已在永磁电机的设计理论、计算方法、结构工艺和控制技术等方面取得了突破性进展,形成了以电磁场数值计算和等效磁路解析求解相结合的一整套分析研究方法和计算机辅助分析、设计软件,并正在不断完善中。
2、 控制问题
永磁电机制成后不需外界能量即可维持其磁场,但也造成从外部调节、控制其磁场极为困难。永磁发电机难以从外部调节其输出电压和功率因数,永磁直流电动机不能再用改变励磁的办法来调节其转速。这些使永磁电机的应用范围受到了限制。但是,随着MOSFET、IGBT等电力电子器件和控制技术的迅猛发展,大多数永磁电机在应用中,可以不必进行磁场控制而只进行电枢控制。设计时需要把稀土永磁材料、电力电子器件和微机控制三项新技术结合起来,使永磁电机在崭新的工况下运行。
3、 不可逆退磁问题
如果设计或使用不当,永磁电机在过高(钕铁硼永磁)或过低(铁氧体永磁)温度时,在冲击电流产生的电枢反应作用下,或在剧烈的机械震动时有可能产生不可逆退磁,或叫失磁,使电机性能降低,甚至无法使用。因而,既要研究开发适于电机制造厂使用的检查永磁材料热稳定性的方法和装置,又要分析各种不同结构形式的抗去磁能力,以便在设计和制造时,采用相应措施保证永磁电机不失磁。
4 、成本问题
铁氧体永磁电机,特别是微型永磁直流电动机,由于结构工艺简单、质量减轻,总成本一般比电励磁电机低,因而得到了极为广泛的应用。由于稀土永磁目前价格还比较贵,稀土永磁电机的成本一般比电励磁电机高,这需要用它的高性能和运行费用的节省来补偿。在某些场合,例如计算机磁盘驱动器的音圈电动机,采用钕铁硼永磁后性能提高,体积质量显着减小,总成本反而降低。在设计时既需根据具体使用场合和要求,进行性能、价格的比较后决定取舍,又要进行结构工艺的创新和设计优化以降低成本。
永磁电机的效率
永磁同步电机主要由定子、转子和壳体部件构成。与普通交流电机一样,定子铁芯为叠片结构,以减小电动机运行时因涡流和磁滞效应铁耗;绕组通常也为三相对称结构,只是参数选取有较大区别。转子部分则形式多样,有带启动鼠笼的永磁转子,也有内嵌式或表贴式纯永磁转子。转子铁芯可以制成实心结构,也可以叠片而成。转子上装有永磁体材料,大家习惯上称之为磁钢。
永磁电机正常工作下,转子与定子磁场处于同步状态,转子部分没有感应电流,无转子铜耗和磁滞、涡流损耗,不需要考虑转子损耗发热问题。一般永磁电机为专用变频器供电,天然具有软启动功能。另外,永磁电机属于同步电机,具有同步电机通过励磁强弱调节功率因数的特点,因而功率因数可以设计到规定数值。
从起动角度分析,缘于永磁电机由变频电源或配套变频器起动的实际,永磁电机的起动过程实现很容易;与变频电机的起动相似,规避了普通笼型异步电机的起动缺陷。
总之,永磁电机的效率和功率因数可以达到很高,结构非常简单,近十几年来市场十分火爆。
但是,失磁故障是永磁电机不可回避的问题,当电流过大或温度过高时,会导致电机绕组温度瞬间不断攀升、电流急剧增大,永磁体迅速失磁。在永磁电机控制中,设定了过电流保护装置,避免了电机定子绕组被烧毁的问题,但由此而导致的失磁和设备停运不可避免。
相对于其他电机,永磁电机在市场上的应用还不是很普及,无论对于电机制造者还是使用者,都有一些未知的技术盲区,特别是涉及到与变频器的匹配问题,往往会导致设计值与试验数据严重不符,必须反复验证。
永磁电机如何耐高温
高低温环境下永磁电机系统的器件特性和指标变化大,电机模型与参数复杂,非线性度增加、耦合程度增加,功率器件损耗变化大,不但驱动器的损耗分析与温升控制策略复杂,而且四象限运行控制更加重要,常规的驱动控制器设计和电机系统控制策略不能满足高温环境的要求。
永磁电机的缺点
由于永磁电机没有机械换向器,所以逆变器对于控制绕组电流至关重要。与其他类型的无刷电机不同,永磁电机不需要电流来支持其磁场。
因此,如果体积小或重量轻,永磁电机可以提供最大的扭矩,并且可能是最好的选择。无磁化电流也意味着在“最佳点”负载下效率更高 - 即电机性能最佳的地方。
此外,尽管永磁体在低速时带来了性能优势,但它们也是技术上的“致命弱点”。例如,随着永磁电机速度的增加,反电动势接近逆变器电源电压,从而无法控制绕组电流。这定义了通用永磁电机的基本速度,并且在表面磁体设计中通常代表给定电源电压的最大可能速度。
在大于基本速度的速度下,IPM使用主动磁场弱化,其中操纵定子电流故意压低磁通量。可以可靠实施的速度范围限制在4:1左右。和以前一样,这个限制可以通过减少绕组匝数和接受更大的成本和逆变器中的功率损耗来实现。
磁场弱化的需要是速度相关的,并且不管扭矩如何都会产生相关的损失。这会降低高速下的效率,特别是在轻负载下。
在高速公路行驶的电动汽车中,这是非常严重的。永磁电机经常受到电动汽车的青睐,但是在实际驾驶周期进行计算时,效率的好处是值得怀疑的。有趣的是,至少有一家著名的电动汽车制造商已经从PM切换到感应电动机。
例如,由于变频器停机,在高速下的磁场减弱会导致不受控制的发电,并且逆变器的直流母线电压可能上升到危险的水平。
除了那些装有钐钴磁体的永磁电机外,操作温度是另一个重要的限制。而由于逆变器故障而产生的高电动机电流会导致退磁。
最大速度受机械磁铁保持力的限制。如果永磁电机损坏,修理它通常需要返回到工厂,因为安全地提取和处理转子是困难的。最后,报废时的回收也很麻烦,尽管当前稀土材料的高价值可能会使这种材料更具经济可行性。
尽管存在这些缺点,永磁电机仍然在低速和甜点效率方面保持无与伦比的地位,而且在尺寸和重量至关重要的情况下,它们都非常有用。
文章来源:电机展览会
免责声明:本文系网络转载,版权归原作者所有。如涉及版权,请联系删除!