手把手教你用Gromacs完成溶菌酶在水中的动力学模拟
结构处理
fetch 1AKI
将输入文件上传到北鲲云超算平台
生成拓扑文件
GROMACS/2019.6-fosscuda GROMACS/2020-foss-2019b
GROMACS/2021-gromacs-cpu-new
GROMACS/gromacs-5.1.5-gpu
GROMACS/2019.6-intel-2019b
GROMACS/2020-fosscuda-2019b
GROMACS/4.5.5-openmpi-1.3.1
GROMACS/2019.6-intelmpi-cuda
GROMACS/2021-fosscuda-2019b
GROMACS/gromacs-5.1.2
module add Gromacs/2020-fosscuda-2019b
[cloudam@master jobs]$ gmx_mpi
:-) GROMACS - gmx_mpi, 2021 (-:
GROMACS is written by:
Andrey Alekseenko Emile Apol Rossen Apostolov
Paul Bauer Herman J.C. Berendsen Par Bjelkmar
Christian Blau Viacheslav Bolnykh Kevin Boyd
Aldert van Buuren Rudi van Drunen Anton Feenstra
Gilles Gouaillardet Alan Gray Gerrit Groenhof
Anca Hamuraru Vincent Hindriksen M. Eric Irrgang
Aleksei Iupinov Christoph Junghans Joe Jordan
Dimitrios Karkoulis Peter Kasson Jiri Kraus
Carsten Kutzner Per Larsson Justin A. Lemkul
Viveca Lindahl Magnus Lundborg Erik Marklund
Pascal Merz Pieter Meulenhoff Teemu Murtola
Szilard Pall Sander Pronk Roland Schulz
Michael Shirts Alexey Shvetsov Alfons Sijbers
Peter Tieleman Jon Vincent Teemu Virolainen
Christian Wennberg Maarten Wolf Artem Zhmurov
and the project leaders:
Mark Abraham, Berk Hess, Erik Lindahl, and David van der Spoel
gmx pdb2gmx -f protein.pdb -o protein_processed.gro -water tip3p -ignh -merge all
Select the Force Field:
From '/public/software/.local/easybuild/software/GROMACS/2021-gromacs-cpu-new/share/gromacs/top':
1: AMBER03 protein, nucleic AMBER94 (Duan et al., J. Comp. Chem. 24, 1999 -2012, 2003)
2: AMBER94 force field (Cornell et al., JACS 117, 5179 -5197, 1995)
3: AMBER96 protein, nucleic AMBER94 (Kollman et al., Acc. Chem. Res. 29, 461 -469, 1996)
4: AMBER99 protein, nucleic AMBER94 (Wang et al., J. Comp. Chem. 21, 1049 -1074, 2000)
5: AMBER99SB protein, nucleic AMBER94 (Hornak et al., Proteins 65, 712 -725, 2006)
6: AMBER99SB-ILDN protein, nucleic AMBER94 (Lindorff-Larsen et al., Proteins 78, 1950 -58, 2010)
7: AMBERGS force field (Garcia & Sanbonmatsu, PNAS 99, 2782 -2787, 2002)
8: CHARMM27 all-atom force field (CHARM22 plus CMAP for proteins)
9: GROMOS96 43a1 force field
10: GROMOS96 43a2 force field (improved alkane dihedrals)
11: GROMOS96 45a3 force field (Schuler JCC 2001 22 1205)
12: GROMOS96 53a5 force field (JCC 2004 vol 25 pag 1656)
13: GROMOS96 53a6 force field (JCC 2004 vol 25 pag 1656)
14: GROMOS96 54a7 force field (Eur. Biophys. J. ( 2011), 40,, 843 -856, DOI: 10.1007/s00249 -011 -0700 -9)
15: OPLS-AA/L all-atom force field ( 2001 aminoacid dihedrals)
posre.itp protein.pdb protein_processed.gro topol.top
定义单位盒子并填充溶剂
gmx editconf -fprotein_processed.gro -o pro_newbox.gro -c -d 1.0 -bt cubic其中-c表示将蛋白质放在盒子中心,-d 1.0表示蛋白质距离盒子边缘至少1埃距离,-bt表示盒子形状为立方体。
gmx solvate -cppro_newbox.gro -cs spc216.gro -o pro_solv.gro -p topol.top
添加离子
gmx grompp -f../MDP/ions.mdp -c pro_solv.gro -p topol.top -o ions.tpr
gmx grompp -f ../MDP/minim.mdp -c pro_solv_ions.gro -p topol.top -o em.tpr
溶剂SOL的组编号为13,因此选择13然后回车,如下所示:
Reading file ions.tpr, VERSION 2021 (single precision)
Reading file ions.tpr, VERSION 2021 (single precision)
Will try to add 0 NA ions and 8 CL ions.
Select a continuous group of solvent molecules
Group 0 ( System) has 33892 elements
Group 1 ( Protein) has 1960 elements
Group 2 ( Protein-H) has 1001 elements
Group 3 ( C-alpha) has 129 elements
Group 4 ( Backbone) has 387 elements
Group 5 ( MainChain) has 517 elements
Group 6 ( MainChain+Cb) has 634 elements
Group 7 ( MainChain+H) has 646 elements
Group 8 ( SideChain) has 1314 elements
Group 9 ( SideChain-H) has 484 elements
Group 10 ( Prot-Masses) has 1960 elements
Group 11 ( non-Protein) has 31932 elements
Group 12 ( Water) has 31932 elements
Group 13 ( SOL) has 31932 elements
Group 14 ( non-Water) has 1960 elements
Select a group: 13
参数文件内容:
![微信截图_20220809170450.png 微信截图_20220809170450.png](https://img.jishulink.com/upload/202208/532101def52747c48f826da2b83af774.png)
![手把手教你用Gromacs完成溶菌酶在水中的动力学模拟的图9](https://jishulink.com/platform/static/ueditor/themes/default/images/spacer.gif)
体系能量最小化
gmx grompp -f ../MDP/minim.mdp -c pro_solv_ions.gro -p topol.top -o em.tpr
MDP参数文件内容:
![2.png 2.png](https://img.jishulink.com/upload/202208/aef38cd982db4a299490c9698744cc20.png)
gmx mdrun -v -deffnm em
Steepest Descent s:
Tolerance (Fmax) = 1.00000 e+ 03
Number of steps = 50000
Step= 0, Dmax= 1.0 e- 02 nm, Epot= - 2.94025 e+ 05 Fmax= 1.53483 e+ 05, atom= 19880
Step= 1, Dmax= 1.0 e- 02 nm, Epot= - 3.12614 e+ 05 Fmax= 6.09036 e+ 04, atom= 19880
Step= 2, Dmax= 1.2 e- 02 nm, Epot= - 3.35310 e+ 05 Fmax= 2.40700 e+ 04, atom= 19880
Step= 3, Dmax= 1.4 e- 02 nm, Epot= - 3.61996 e+ 05 Fmax= 1.00755 e+ 04, atom= 24188
Step= 4, Dmax= 1.7 e- 02 nm, Epot= - 3.87330 e+ 05 Fmax= 4.66750 e+ 03, atom= 983
Step= 5, Dmax= 2.1 e- 02 nm, Epot= - 4.08800 e+ 05 Fmax= 1.30036 e+ 04, atom= 547
Step= 6, Dmax= 2.5 e- 02 nm, Epot= - 4.13336 e+ 05 Fmax= 2.07112 e+ 04, atom= 547
Step= 7, Dmax= 3.0 e- 02 nm, Epot= - 4.17185 e+ 05 Fmax= 1.90699 e+ 04, atom= 547
Step= 8, Dmax= 3.6 e- 02 nm, Epot= - 4.18940 e+ 05 Fmax= 2.96782 e+ 04, atom= 547
Step= 9, Dmax= 4.3 e- 02 nm, Epot= - 4.21615 e+ 05 Fmax= 2.83858 e+ 04, atom= 547
Step= 11, Dmax= 2.6 e- 02 nm, Epot= - 4.26495 e+ 05 Fmax= 6.89298 e+ 03, atom= 547
Step= 12, Dmax= 3.1 e- 02 nm, Epot= - 4.27186 e+ 05 Fmax= 3.75623 e+ 04, atom= 1785
Step= 13, Dmax= 3.7 e- 02 nm, Epot= - 4.33871 e+ 05 Fmax= 1.81256 e+ 04, atom= 1785
Step= 15, Dmax= 2.2 e- 02 nm, Epot= - 4.35813 e+ 05 Fmax= 1.54546 e+ 04, atom= 1785
Step= 16, Dmax= 2.7 e- 02 nm, Epot= - 4.37056 e+ 05 Fmax= 2.45185 e+ 04, atom= 1785
echo 10 0 | gmx energy -f em.edr -o potential.xvg
NVT平衡
gmx grompp - f ../MDP/nvt.mdp - c em.gro -r em.gro - p topol.top - o nvt.tpr gmx mdrun -deffnm nvt
title = OPLS Lysozyme NVT equilibration
define = -DPOSRES ; position restrain the protein
; Run parameters
integrator = md ; leap-frog integrator
nsteps = 50000 ; 2 * 50000 = 100 ps
dt = 0.002 ; 2 fs
; Output control
nstxout = 500 ; save coordinates every 1.0 ps
nstvout = 500 ; save velocities every 1.0 ps
nstenergy = 500 ; save energies every 1.0 ps
nstlog = 500 ; update log file every 1.0 ps
; Bond parameters
continuation = no ; first dynamics run
constraint_algorithm = lincs ; holonomic constraints
constraints = h-bonds ; bonds involving H are constrained
lincs_iter = 1 ; accuracy of LINCS
lincs_order = 4 ; also related to accuracy
; Nonbonded settings
cutoff-scheme = Verlet ; Buffered nei ghor searching
ns_type = grid ; search nei ghoring grid cells
nstlist = 10 ; 20 fs, largely irrelevant with Verlet
rcoulomb = 1.0 ; short-range electrostatic cut off (in nm)
rvdw = 1.0 ; short-range van der Waals cut off (in nm)
DispCorr = EnerPres ; account for cut- off vdW scheme
; Electrostatics
coulombtype = PME ; Particle Mesh Ewald for long-range electrostatics
pme_order = 4 ; cubic interpolation
fourierspacing = 0.16 ; grid spacing for FFT
; Temperature coupling is on
tcoupl = V-rescale ; modified Berendsen thermostat
tc-grps = Protein Non-Protein ; two coupling groups - more accurate
tau_t = 0.1 0.1 ; time constant, in ps
ref_t = 300 300 ; reference temperature, one for each group, in K
; Pressure coupling is off
pcoupl = no ; no pressure coupling in NVT
; Periodic boundary conditions
pbc = xyz ; 3-D PBC
; Velocity generation
gen_vel = yes ; assign velocities from Maxwell distribution
gen_temp = 300 ; temperature for Maxwell distribution
gen_seed = - 1 ; generate a random seed
echo 16 0 |gmx energy -f nvt.edr -o temperature.xvg
NPT平衡
gmx grompp -f ../MDP/npt.mdp -c nvt.gro -r nvt.gro -t nvt.cpt -p topol.top -o npt.tpr
gmx mdrun -deffnm npt
title = OPLS Lysozyme NPT equilibration
define = -DPOSRES ; position restrain the protein
; Run parameters
integrator = md ; leap-frog integrator
nsteps = 50000 ; 2 * 50000 = 100 ps
dt = 0.002 ; 2 fs
; Output control
nstxout = 500 ; save coordinates every 1.0 ps
nstvout = 500 ; save velocities every 1.0 ps
nstenergy = 500 ; save energies every 1.0 ps
nstlog = 500 ; update log file every 1.0 ps
; Bond parameters
continuation = yes ; Restarting after NVT
constraint_algorithm = lincs ; holonomic constraints
constraints = h-bonds ; bonds involving H are constrained
lincs_iter = 1 ; accuracy of LINCS
lincs_order = 4 ; also related to accuracy
; Nonbonded settings
cutoff-scheme = Verlet ; Buffered nei ghor searching
ns_type = grid ; search nei ghoring grid cells
nstlist = 10 ; 20 fs, largely irrelevant with Verlet scheme
rcoulomb = 1.0 ; short-range electrostatic cut off (in nm)
rvdw = 1.0 ; short-range van der Waals cut off (in nm)
DispCorr = EnerPres ; account for cut- off vdW scheme
; Electrostatics
coulombtype = PME ; Particle Mesh Ewald for long-range electrostatics
pme_order = 4 ; cubic interpolation
fourierspacing = 0.16 ; grid spacing for FFT
; Temperature coupling is on
tcoupl = V-rescale ; modified Berendsen thermostat
tc-grps = Protein Non-Protein ; two coupling groups - more accurate
tau_t = 0.1 0.1 ; time constant, in ps
ref_t = 300 300 ; reference temperature, one for each group, in K
; Pressure coupling is on
pcoupl = Parrinello-Rahman ; Pressure coupling on in NPT
pcoupltype = isotropic ; uniform scaling of box vectors
tau_p = 2.0 ; time constant, in ps
ref_p = 1.0 ; reference pressure, in bar
compressibility = 4.5e- 5 ; isothermal compressibility of water, bar^- 1
refcoord_scaling = com
; Periodic boundary conditions
pbc = xyz ; 3-D PBC
; Velocity generation
gen_vel = no ; Velocity generation is off
echo 18 0| gmx energy -f npt.edr -o pressure.xvg
动力学模拟成品模拟
gmx grompp -f ../MDP/md.mdp -c npt.gro -t npt.cpt -p topol.top -o md.tpr
gmx mdrun -v -deffnm md
title = OPLS Lysozyme NPT equilibration
; Run parameters
integrator = md ; leap-frog integrator
nsteps = 10000000 ; 2 * 10000000 = 20000 ps ( 20 ns)
dt = 0.002 ; 2 fs
; Output control
nstxout = 0 ; suppress bulky .trr file by specifying
nstvout = 0 ; 0 for output frequency of nstxout,
nstfout = 0 ; nstvout, and nstfout
nstenergy = 5000 ; save energies every 10.0 ps
nstlog = 5000 ; update log file every 10.0 ps
nstxout-compressed = 5000 ; save compressed coordinates every 10.0 ps
compressed-x-grps = System ; save the whole system
; Bond parameters
continuation = yes ; Restarting after NPT
constraint_algorithm = lincs ; holonomic constraints
constraints = h-bonds ; bonds involving H are constrained
lincs_iter = 1 ; accuracy of LINCS
lincs_order = 4 ; also related to accuracy
; Neighorsearching
cutoff-scheme = Verlet ; Buffered nei ghor searching
ns_type = grid ; search nei ghoring grid cells
nstlist = 10 ; 20 fs, largely irrelevant with Verlet scheme
rcoulomb = 1.0 ; short-range electrostatic cut off (in nm)
rvdw = 1.0 ; short-range van der Waals cut off (in nm)
; Electrostatics
coulombtype = PME ; Particle Mesh Ewald for long-range electrostatics
pme_order = 4 ; cubic interpolation
fourierspacing = 0.16 ; grid spacing for FFT
; Temperature coupling is on
tcoupl = V-rescale ; modified Berendsen thermostat
tc-grps = Protein Non-Protein ; two coupling groups - more accurate
tau_t = 0.1 0.1 ; time constant, in ps
ref_t = 300 300 ; reference temperature, one for each group, in K
; Pressure coupling is on
pcoupl = Parrinello-Rahman ; Pressure coupling on in NPT
pcoupltype = isotropic ; uniform scaling of box vectors
tau_p = 2.0 ; time constant, in ps
ref_p = 1.0 ; reference pressure, in bar
compressibility = 4.5e- 5 ; isothermal compressibility of water, bar^- 1
; Periodic boundary conditions
pbc = xyz ; 3-D PBC
; Dispersion correction
DispCorr = EnerPres ; account for cut- off vdW scheme
; Velocity generation
gen_vel = no ; Velocity generation is off
starting mdrun 'HYDROLASE in water'
10000000 steps, 20000.0 ps.
step 80: timed with pme grid 44 44 44, coulomb cutoff 1.000: 140.1 M-cycles
step 160: timed with pme grid 40 40 40, coulomb cutoff 1.091: 135.9 M-cycles
step 240: timed with pme grid 36 36 36, coulomb cutoff 1.212: 147.5 M-cycles
step 320: timed with pme grid 32 32 32, coulomb cutoff 1.363: 175.3 M-cycles
step 400: timed with pme grid 36 36 36, coulomb cutoff 1.212: 145.9 M-cycles
step 480: timed with pme grid 40 40 40, coulomb cutoff 1.091: 138.7 M-cycles
step 560: timed with pme grid 42 42 42, coulomb cutoff 1.039: 141.3 M-cycles
step 640: timed with pme grid 44 44 44, coulomb cutoff 1.000: 143.6 M-cycles
optimal pme grid 40 40 40, coulomb cutoff 1.091
step 9999900, remaining wall clock time: 0 s
Writing final coordinates.
step 10000000, remaining wall clock time: 0 s
NOTE: The GPU has > 25% less load than the CPU. This imbalance causes
performance loss.
Core t (s) Wall t (s) (%)
Time: 322366.259 12049.380 2675.43h20: 49
(ns/day) (hour/ns)
Performance: 143.410 0.167
gcq #450: "Above all, don't fear difficult moments. The best comes from them." (Rita Levi-Montalcini)
echo 4 4| gmx rms -f md.xtc -s md.tpr -o rmsd
xmgrace -nxy rmsd.xvg
北鲲云超算平台作业提交
sbatch -N 1 -p g-v100-1 -c 12 md-gromacs.sh
module add GROMACS/ 2020-fosscuda- 2019 b
export GMX_GPU_DD_COMMS=true
export GMX_GPU_PME_PP_COMMS=true
export GMX_FORCE_UPDATE_DEFAULT_GPU=true
ntomp= "$SLURM_CPUS_PER_TASK"
export OMP_NUM_THREADS=$ntomp
echo 4 | gmx pdb2gmx - f protein.pdb - o protein_processed.gro -water tip3p -ignh -merge all
gmx editconf - f protein_processed.gro - o pro_newbox.gro - c -d 1.0 -bt cubic
gmx solvate - cp pro_newbox.gro - cs spc216.gro - o pro_solv.gro - p topol.top
gmx grompp - f ../MDP/ions.mdp - c pro_solv.gro - p topol.top - o ions.tpr
echo 13| gmx genion -s ions.tpr - o pro_solv_ions.gro - p topol.top -pname NA -nname CL -neutral
gmx grompp - f ../MDP/minim.mdp - c pro_solv_ions.gro - p topol.top - o em.tpr
gmx mdrun -v -deffnm em
echo 10 0 | gmx energy - f em.edr - o potential.xvg
gmx grompp - f ../MDP/nvt.mdp - c em.gro -r em.gro - p topol.top - o nvt.tpr
gmx mdrun -deffnm nvt
echo 16 0 |gmx energy - f nvt.edr - o temperature.xvg
gmx grompp - f ../MDP/npt.mdp - c nvt.gro -r nvt.gro -t nvt.cpt - p topol.top - o npt.tpr
gmx mdrun -deffnm npt
echo 18 0| gmx energy - f npt.edr - o pressure.xvg
gmx grompp - f ../MDP/md.mdp - c npt.gro -t npt.cpt - p topol.top - o md.tpr
gmx mdrun -v -deffnm md
echo 4 4| gmx rms - f md.xtc -s md.tpr - o rmsd.xvg
高性能计算资源,极大的节省计算成本
支持海量的计算工具,且开箱即用
计算任务进度实时追踪提示的贴心服务
详细耐心的技术咨询
点赞 1 评论 1 收藏