石墨烯为基底开发多功能纳米生物催化系统
鉴于石墨烯具有广阔的表面积和独特的物理化学属性,包括高机械刚度、弹性、强度和卓越的导热性和导电性,石墨烯和基于石墨烯的纳米结构材料在不同领域引起了研究人员极大的兴趣,如能源储存、催化、环境传感和修复。较大的表面积和功能化的适应性使石墨烯基纳米复合材料成为固定各种生物分子、蛋白质和酶的理想纳米载体。石墨烯纳米结构被各种功能基团(即羟基、羧基和环氧化物基团)功能化后,有可能引入新的特性,从而提高固定化生物催化剂的性能,如增强在活体中的运输能力,保护其免受蛋白酶的作用,促进电子转移到蛋白质,以及在微芯片生物反应器和微型设备中有效整合酶。在此,我们介绍了目前在利用石墨烯纳米材料进行酶固定化,为一系列生物技术应用开发强大的纳米生物催化系统方面的进展。在总结了基于石墨烯的纳米材料的工程和酶与材料的协调以提高催化性能之后,我们特别强调石墨烯和基于石墨烯的纳米结构作为理想的支持基质,为多方面的生物技术应用开发多功能纳米生物催化系统的前景。在这个快速发展的领域,我们也概述了可能的挑战和基于未来的观点。
ABSTRACT: Given the extensive surface area and unique physicochemical attributes, including high mechanical stiffness, elasticity, strength, and superior thermal and electrical conductivity, graphene and graphene-based nanostructured materials have enticed supreme researcher’s interest in diverse fields, such as energy storage, catalysis, environmental sensing, and remediation. Substantial surface area and functionalization amenability render graphene-based nanocomposites interesting nanocarriers for immobilizing a variety of biological molecules, proteins, and enzymes. Functionalization of graphene nano-constructs by various functional moieties (i.e., hydroxyl, carboxylic, and epoxide groups) offer the opportunity to introduce novel properties that leads to enhanced performance of immobilized biocatalysts, such as enhanced transportation ability in living entities, protection from proteolytic action, facilitating electron transfer to the protein, and efficient integration of enzymes in microchip bioreactors and microdevices. Herein, we present current developments in exploiting graphene nanomaterials for enzyme immobilization to develop robust nano-biocatalytic systems for a range of biotechnological applications. After summarizing the engineering of graphene-based nanomaterials and enzymenanomaterial coordination for enhanced catalytic performance, particular emphasis has been given to thoroughly illustrating the promise of graphene and graphene-based nanoarchitectures as ideal support matrices to develop multifunctional nano-biocatalytic systems for multifaceted biotechnological applications. Possible challenges and future viewpoints in this quickly evolving field are also directed.
关键词:纳米生物催化作用 石墨烯 磁性氧化石墨烯纳米复合材料 膜反应器 木质纤维素水解 污水处理
引言
合成石墨烯基纳米材料
03
GO表面功能化
3.1 PEG功能化
3.2亲水聚合物功能化
协调酶-纳米材料以提高催化性能
石墨烯固定化纳米生物催化系统的应用
5.1. 从水中去除染料
结束语和未来展望
[1] M. Adeel, M. Bilal, T. Rasheed, A. Sharma, H.M. Iqbal, Graphene and graphene oxide: Functionalization and nano-bio-catalytic system for enzyme immobilization and biotechnological perspective, Int. J. Biol. Macromol. 120 (2018) 1430–1440.
[2] Z. Ahsan, U. Kalsoom, H.N. Bhatti, K. Aftab, N. Khalid, M. Bilal, Enzyme-assisted bioremediation approach for synthetic dyes and polycyclic aromatic hydrocarbons degradation, J. Basic Microbiol. 61 (11) (2021) 960–981.
[3] K.A. Al-Maqdi, M. Bilal, A. Alzamly, H. Iqbal, I. Shah, S.S. Ashraf, Enzyme-Loaded Flower-Shaped Nanomaterials: A Versatile Platform with Biosensing, Biocatalytic, and Environmental Promise, Nanomaterials 11 (6) (2021) 1460.
[4] K.A. Al-Maqdi, N. Elmerhi, K. Athamneh, M. Bilal, A. Alzamly, S.S. Ashraf, I. Shah, Challenges and Recent Advances in Enzyme-Mediated Wastewater Remediation—A Review, Nanomaterials 11 (11) (2021) 3124.
[5] T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, D.L. Huber, Synthesis and characterization of titania− graphene nanocomposites, The Journal of Physical Chemistry C 113 (46) (2009) 19812–19823.
[6] B. Li, H. Cao, ZnO@ graphene composite with enhanced performance for the removal of dye from water, J. Mater. Chem. 21 (10) (2011) 3346–3349.
[7] J. Zhang, Z. Xiong, X. Zhao, Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation, J. Mater. Chem. 21 (11) (2011) 3634–3640. [8] X. An, C.Y. Jimmy, Graphene-based photocatalytic composites. RSC, Advances 1 (8) (2011) 1426–1434.
[8] Y. Li, L. Feng, X. Shi, X. Wang, Y. Yang, K. Yang, Z. Liu, Surface coating dependent cytotoxicity and degradation of graphene derivatives: Towards the design of non-toxic, degradable nano-graphene, Small 10 (8) (2014) 1544–1554.
[9] S. Ariaeenejad, E. Motamedi, G.H. Salekdeh, Stable cellulase immobilized on graphene oxide@ CMC-g-poly (AMPS-co-AAm) hydrogel for enhanced enzymatic hydrolysis of lignocellulosic biomass, Carbohydr. Polym. 230 (2020), 115661.
[10] S. Ariaeenejad, E. Motamedi, G.H. Salekdeh, Application of the immobilized enzyme on magnetic graphene oxide nano-carrier as a versatile bi-functional tool for efficient removal of dye from water, Bioresour. Technol. 319 (2021), 124228.
[11] S.A. Ansari, Q. Husain, Potential applications of enzymes immobilized on/in nano materials: A review, Biotechnol. Adv. 30 (3) (2012) 512–523.
[12] V. Atiroglu, ˘ Lipase immobilization on synthesized hyaluronic acid-coated magnetic nanoparticle-functionalized graphene oxide composites as new biocatalysts: Improved reusability, stability, and activity, Int. J. Biol. Macromol. 145 (2020) 456–465.
[13] C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine, Langmuir 25 (20) (2009) 12030–12033.
[14] G. Gollavelli, Y.-C. Ling, Multi-functional graphene as an in vitro and in vivo imaging probe, Biomaterials 33 (8) (2012) 2532–2545. [15] O. Barbosa, C. Ortiz, A. ´ Berenguer-Murcia, R. Torres, R.C. Rodrigues, R. Fernandez-Lafuente, Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts, Biotechnol. Adv. 33 (5) (2015) 435–456.
[15] O. Barbosa, C. Ortiz, A. ´ Berenguer-Murcia, R. Torres, R.C. Rodrigues, R. Fernandez-Lafuente, Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts, Biotechnol. Adv. 33 (5) (2015) 435–456.
[16] R. Begum, J. Najeeb, A. Sattar, K. Naseem, A. Irfan, A.G. Al-Sehemi, Z.H. Farooqi, Chemical reduction of methylene blue in the presence of nanocatalysts: a critical review, Rev. Chem. Eng. 36 (6) (2020) 749–770.
[17] M. Bilal, M. Asgher, H.M. Iqbal, H. Hu, X. Zhang, Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates, Environ. Sci. Pollut. Res. 24 (8) (2017) 7035–7041.
[18] O. Barbosa, C. Ortiz, A. ´ Berenguer-Murcia, R. Torres, R.C. Rodrigues, R. Fernandez-Lafuente, Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts, Biotechnol. Adv. 33 (5) (2015) 435–456.
[19] M. Bilal, H.M. Iqbal, S.F. Adil, M.R. Shaik, A. Abdelgawad, M.R. Hatshan, M. Khan, Surface-coated magnetic nanostructured materials for robust biocatalysis and biomedical applications-A review, J. Adv. Res. 38 (2021) 157–177.
[20] M. Bilal, H.M. Iqbal, H. Hu, W. Wang, X. Zhang, Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes, J. Environ. Manage. 188 (2017) 137–143.
[21] Y. Gao, I. Kyratzis, Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide—a critical assessment Vol. 19 (2008) 1945–1950
[22] R. Manjunatha, G.S. Suresh, J.S. Melo, S.F. D’Souza, T.V. Venkatesha, An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination, Talanta 99 (2012) 302–309.
[23] J. Zhang, F. Zhang, H. Yang, X. Huang, H. Liu, J. Zhang, S. Guo, Graphene oxide as a matrix for enzyme immobilization, Langmuir 26 (9) (2010) 6083–6085.
[24] R. Kamogawa, C.S.C. Issasi, M. Sasaki, T. Matsuda, Geotrichum candidum acetophenone reductase immobilization on reduced graphene oxide: A promising biocatalyst for green asymmetric reduction of ketones, Biochem. Eng. J. 177 (2022), 108263.
[25] S. Ariaeenejad, E. Motamedi, G.H. Salekdeh, Stable cellulase immobilized on graphene oxide@ CMC-g-poly (AMPS-co-AAm) hydrogel for enhanced enzymatic hydrolysis of lignocellulosic biomass, Carbohydr. Polym. 230 (2020), 115661.
来源:闫博伟 | 图文
老师:陈德富
编辑:李佳
本公众号长期征收稿件
投稿邮箱:nkxibaogongcheng@163.com