我国核能技术的发展方向
提供“流体计量投加与控制” 解决方案的专家型企业
核能是安全、清洁、低碳、高能量密度的战略能源。2011年发生的福岛核事故客观上延缓了各国对发展核能的预期,但这种影响在逐渐减弱。
我国发展核能对于保障能源安全、实现绿色低碳发展具有重要作用;对于带动装备制造业走向高端、打造中国经济“升级版”意义重大。
全球范围内的核电建设正迎来新的高潮,核电“走出去”已成为国家战略。
让我们根据“核能技术方向研究及发展路线图”课题的主要内容,来看看我国核能技术的发展方向。
核能领域科技发展存在的重大技术问题
1
热堆规模化发展需要解决的技术问题
铀矿勘查、采冶开发需要加强。根据我国新一轮铀矿资源潜力评价的结果,在不考虑引入MOX燃料元件、发展快堆技术的前提下,国内天然铀只能满足近1×108 kW压水堆核电站全寿命周期(60年)运行需求。我国铀资源勘查程度低,考虑到从地质勘查到获得天然铀,再通过铀的转化、铀同位素分离和制造出核燃料元件入堆,至少需要15年以上,必须从现在开始加强地质勘查和采冶开发,以保证我国核电的可持续发展。
核燃料组件制造产能不足。我国目前的燃料组件产能为1400 tU/a。按照每个压水堆约需30 tU测算,到2020年,总的燃料元件需求约1800 tU/a,供需缺口达到400 tU/a。
第三代先进压水堆的安全性和经济性需要优化平衡。目前国内外在建的三代压水堆如AP1000、EPR都有不同程度的延期,造成首堆经济性较差,从而引发公众质疑核电经济性逐步变差。这是关系第三代核电规模化推广的重大问题,亟待开展系统性的研究工作。
在核能规模化发展阶段,核设施运行与维修技术需要升级。当存在大量高龄机组时,必须全面升级运行维修技术,实现从“低端手工式”到“高端智能式”作业的转变;核电设备的可靠性、老化管理技术及应急响应技术都需要尽快完善和提高。
核电软件能力建设急需加强。近几年,我国核电软件自主化开发取得关键突破,结束了我国核电没有自主设计软件的历史。美国和欧盟正在开发“数值反应堆技术”,旨在以高性能计算技术为基础,利用多物理、多尺度耦合技术建立一个具有预测反应堆性能的虚拟仿真环境。国内应该联合优势力量,争取在新一轮的核能软件研发领域赶上欧美发达国家的步伐。
急需开展后处理能力建设,并配套发展离堆储存技术,解决目前的核电乏燃料后处理和堆内储存矛盾。高水平放射性废物处置工作需要尽快展开。
2
快堆和第四代堆发展需要解决的技术问题
裂变燃料的增殖。虽然短期内不存在铀资源制约问题,但我国核电长期规模化发展仍面临燃料供应不足的风险。快堆理论上可以将铀资源利用率提高到60%以上,有望成为一种千年能源。钠冷金属燃料快堆增殖比高,配合先进干法后处理和元件快速制造技术可以实现较短的燃料倍增时间,有利于核能快速扩大规模,应该及早开展相关的基础研究。
超铀元素分离与嬗变。超铀元素含有宝贵的核燃料,也是乏燃料长期放射性的主要来源,它的处理是影响公众核电接受度的重要问题。分离和嬗变是处理超铀元素的有效途径,需要发展先进的分离技术、废物整备技术、含MA元件/靶件制备技术,加快研发关键设备与材料。超铀元素的嬗变需要开发专用嬗变快堆或者ADS系统。
先进核能的多用途利用。除了发电,核能在供热(城市区域供热、工业工艺供热、海水淡化)和核动力领域都很有发展潜力。开发模块化压水堆、超高温气冷堆、铅冷快堆等小型化多用途堆型,可以作为核能发展的重要补充。
第四代堆堆型的定位和取舍。第四代堆堆型众多,且处于不同的发展阶段,一个国家没有必要、也没有能力全面发展。因此,应该加强核能战略研究,明确各种堆型的独特优势、技术成熟度和发展的空间。
3
聚变科学需要解决的技术问题
实现受控聚变主要有磁约束和惯性约束两种途径,二者均处于不同探索阶段,距离聚变能源的要求还比较远。磁约束聚变界正在联合建造国际热核聚变实验堆(ITER),将在ITER上研究稳态燃烧等离子体各类物理与技术问题,验证开发利用聚变能源的科学可行性和工程可行性。Z箍缩惯性约束聚变首先需要解决点火问题。
实现大量聚变反应所需的关键技术,对磁约束聚变而言是加热、约束(实现聚变)和维持(长时间或平均长时间的聚变反应);对惯性约束而言则是压缩、点火和高重复频率点火。未来的磁约束聚变装置必须以长脉冲或者连续方式运行,以便获得可实用的聚变能量并稳定输出;惯性约束聚变要能获得大量聚变能量必须实现以高重复频率点火方式运行,具有相当大的挑战。
聚变能源在商业应用前还需研制能耐高能中子辐照的材料,建立能够实现氚自持的燃料循环等诸多工程技术挑战。发展聚变裂变混合堆有可能促进聚变能提前应用,其在未来能源中的竞争力应该和第四代堆及纯聚变堆比较。
核能领域科技发展态势
压水堆是2030年前我国核电发展的主力。总体发展方向是围绕核能利用的长期安全稳定及效能最大化。安全性仍然是核电发展的前提,实现安全性与经济性的优化平衡是第三代核电发展面临的现实挑战。压水堆乏燃料的干式储存、运输、后处理、高水平放射性废物处置需要统筹考虑和合理布局。
快堆及第四代堆是核能下一步的发展方向。预计2030年前后将有部分成熟第四代堆推向市场,之后逐渐扩大规模。钠冷快堆是目前第四代堆中技术成熟度最高、最接近商用的堆型,也是世界主要核大国继压水堆之后的重点发展方向。钠冷快堆首先需要通过示范堆证明其安全性和经济性。快堆配套的燃料循环是关系快堆规模化发展的关键,涉及压水堆乏燃料后处理、快堆燃料元件生产、快堆乏燃料后处理等环节。如果非常规铀开发取得突破,如海水提铀技术,那么快堆能源供应的需求会弱化,嬗变超铀元素和长寿命裂变产物的需求会强化。即使快堆的定位从增殖转向嬗变,发展规模相应减少,但快堆及其燃料循环发展还是必需的。
考虑到快堆燃料循环的建立需要数十年的时间,应该及早开展相关研究工作,加强技术储备。我国的高温气冷堆技术世界领先,在此基础上发展超高温气冷堆,将是核能多用途利用的重要方式之一。其他第四代堆技术尚处于研发阶段,在某些技术上具有一定的优势,但也存在着需要克服的工程难题,应该首先加强共性基础问题研究。
聚变能是未来理想的战略能源之一。在磁约束聚变领域,托卡马克的研究目前处于领先地位。我国正式参加了ITER项目的建设和研究;同时正在自主设计、研发中国聚变工程试验堆(CFETR)。在惯性约束领域,Z箍缩作为能源更具有潜力,我国提出的Z箍缩驱动的聚变–裂变混合堆更有可能发展成具有竞争力的未来能源。实现聚变能的应用尚未发现任何捷径,但需要继续关注国际聚变能研究的新思想、新技术和新途径。
我国核电发展具有后发优势,在运机组安全水平和运行业绩均居国际前列。以“华龙一号”和CAP1400为代表的自主先进第三代压水堆系列机型,可实现从设计上实际消除大规模放射性物质释放,是未来核电规模化发展的主力机型。铀资源供应不会对我国核电发展形成根本制约。
核能发展仍面临可持续性(提高铀资源利用率,实现放射性废物最小化)、安全与可靠性、经济性、防扩散与实体保护等方面的挑战。国际上正在开发以快堆为代表的第四代核能系统,期待能更好地解决这些问题。
文章来源:中国能源研究会 作者:杜祥琬,叶奇蓁,徐銤,万元熙,彭先觉,苏罡,杨勇,高翔,师学明