人工智慧在射出成型之应用
■高雄科技大学/ 黄明贤 特聘教授
前言
射出成型背景知识
射出成型生产技术乃首先将粒状的高分子原料先加热塑化至熔融状态,续以外力射入模穴内冷却成型。由于产品质量受熔胶质量影响甚大,其中代表熔胶流动难易程度的指标以黏度(Viscosity)最为关键。低黏度容易充填;高黏度需要较大的压力才能充填满模穴,否则容易出现短射或尺寸不足等质量缺陷。所以熔胶黏度可以作为成型质量好坏的重要指针,但容易受众多因子影响。
图1:影响熔胶质量的因素
-
塑化参数:料管温度、背压压力、螺杆转速、计量时间、螺杆几何; -
机台特性:稳定性、精密度、重现性、控制法则、机台刚性、机台响应; -
原料性质:流变性、批次、湿度、温度; -
成型参数:射出压力/速度、保压压力/时间、V/P切换时机。
由于成型质量易受制程参数的变动所影响,所以适当的参数设定与制程监控对维持制程稳定很重要。
表1:射出成型控制参数阶层表
图2:熔胶在不同位置下的压力[1]
表2:使用传感器进行熔胶质量及成品质量的监测研究
射出成型4.0
人工智能与射出成型
-
https://www.moldex3d.com/ch/learning/moldex3d-book-series/. -
Zhang Y, Man T, Huang S, Gao H, Li D (2016) A statistical quality monitoring method for plastic injection molding using machine built-in sensors. International Journal of Advanced Manufacturing Technology, 83:2483–2494. -
Kurt MB, Kamber OS, Kaynak Y, Atakök G, Girit O (2009) Experimental investigation of plastic injection molding: assessment of the effects of cavity pressure and mold temperature on the quality of the final products. Mater. Des. 20:3217–3224. -
Gordon G, Kazmer DO, Tang X, Fan Z, Gao RX (2015) Quality control using a multivariate injection molding sensor. Int. J. Adv. Manuf. Technol., 78:1381–1391. -
Huang MS (2007) Cavity pressure based grey prediction of the filling-to-packing switchover point for injection molding. J. Mater. Process. Technol. 183:419–424. -
Chen JY, Yang KJ, Huang MS (2018) Online quality monitoring of molten resin in injection molding. Int. J. Heat Mass Transf. 122:681–693. -
Fernandez A, Muniesa M, Javierre C (2014) In-line rheological testing of thermoplastics and a monitored device for an injection moulding machine: application to raw and recycled polypropylene. Polym. Test. 33:107–115. -
Gornik C (2019) Viscosity measuring methods for feedstocks directly on injection molding machines. Materials Science Forum 174:591–593. -
Zhao P, Zhou H, He Y, Cai K, Fu J (2014) A nondestructive online method for monitoring the injection molding process by collecting and analyzing machine running data. Int. J. Adv. Manuf. Technol. 72:765–777. -
Fung KT, Gao F, Chen X (2007) Application of a capacitive transducer for online part weight prediction and fault detection in injection molding. Polym. Eng. Sci. 47:347–353. -
Wong HY, Fung KT, Gao F (2008) Development of a transducer for in-line and through cycle monitoring of key process and quality variables in injection molding. Sens. Actuators Phys. 141:712–722. -
ENGEL Kunststoff Spritzgussmaschinen | Spritzgießmaschinen Kunststoff. https://www.engelglobal.com/de/at.html. -
Leo Kumar SP (2017) State of the art-intense review on artificial intelligence systems application in process planning and manufacturing. Eng. Appl. Artif. Intell. 65:294–329. -
Napoleone A, Macchi M, Pozzetti A (2020) A review on the characteristics of cyber-physical systems for the future smart factories. J. Manuf. Syst. 54:305–335. -
Thramboulidis K, Vachtsevanou DC, Kontou I (2019) CPuS-IoT: A cyber-physical microservice and IoT-based framework for manufacturing assembly systems. Annu. Rev. Control 47:237–248. -
Ageyeva T, Horváth S, Kovács JG (2019) In-mold sensors for injection molding: on the way to Industry 4.0. Sensors 19:3551. -
Yeh DY, Cheng CH, Hsiao SC (2011) Classification knowledge discovery in mold tooling test using decision tree algorithm. J. Intell. Manuf. 22:585–595 -
Raviwongse R, Allada V (1997) Artificial neural network based model for computation of injection mould complexity. Int. J. Adv. Manuf. Technol. 13:577–586. -
Ogorodnyk O, Lyngstad OV, Larsen M, Wang K, Martinsen K (2019) Application of machine learning methods for prediction of parts quality in thermoplastics injection molding. Proceedings of the Advanced Manufacturing and Automation VIII. Springer: Singapore, 237–244. -
Shen C, Wang L, Li Q (2007) Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. J. Mater. Process. Technol. 183:412–418. -
Bensingh RJ, Machavaram R, Boopathy SR, Jebaraj C (2015) Injection molding process optimization of a bi-aspheric lens using hybrid artificial neural networks (ANNs) and particle swarm optimization (PSO). Measurement 134:359–374. -
LeCun Y, Bengio Y, Hinton G ) Deep learning. Nature 521:436–444. -
Collobert R, Kavukcuoglu K, Farabet C (2011) Torch7: A Matlab-like environment for machine learning. Proceedings of the NIPS 2011. -
Ketkar N (2017) Deep learning with python. Apress, Berkeley, CA. -
Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, et al. Above the clouds: A Berkeley View of Cloud Computing. 25. -
Shao Y, Di L, Bai Y, Guo B, Gong J (2012) Geoprocessing on the Amazon cloud computing platform – AWS. Proceedings of the 2012 First International Conference on Agro- Geoinformatics (Agro-Geoinformatics), 1–6. -
Jennings R (2010) Cloud computing with the windows Azure platform; John Wiley & Sons. -
Carneiro T, Medeiros Da NóBrega RV, Nepomuceno T, Bian GB, De Albuquerque VHC, Filho PPR (2018) Performance analysis of Google colaboratory as a tool for accelerating deep learning applications. IEEE Access 6:61677–61685.
更多技术内容请扫码观看
欢迎关注型创科技_ACMT技术课堂
未经同意,请勿转载!
点赞 1 评论 收藏