workbench-ACP复合材料层合板三点弯曲仿真-实例3
更新于1月7日 浏览:699 评论:1
一、目标
1、层合板与治具接触三点弯曲分析
2、对比基于ASTM7264测试标准实测数据
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图1](https://img.jishulink.com/202501/attachment/e49b4e5cd0f74d8089c5ad0557369e9a.png)
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图2](https://img.jishulink.com/202501/attachment/ab20422aea444b4fab8d59d3dec784ac.gif)
二、实例说明
1、材料参数:T800/160/37(单层厚度:0.167mm)
2、铺 层:[0]12
3、模型尺寸:壳单元,13*180mm,厚度:2mm,跨距:64:1,支撑和压头直径10mm
4、加 载:底部支撑固定,顶部压头加载
5、结 果:对比模拟与实测结果,查看层间应力、失效情况
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图3](https://img.jishulink.com/202501/attachment/599c6e8ddf374323aab13ec8bf9138ec.png)
三、仿真过程
1、输入材料参数
采用外导入材料,基于ASTM3039实测数据
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图4](https://img.jishulink.com/202501/attachment/84fb0f928b4442b9ab39d4b17a138fbf.png)
2、导入模型
模型在3D软件建模,
ACP只导入片体,不支持实体导入,治具通过Mechanical Model导入,一起关联Static Structural
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图5](https://img.jishulink.com/202501/attachment/ce2b4eb18b394017a9ac7251c3b9458a.png)
编辑
跳转
3、网格划分
试板网格大小1.5mm,接触边网格为0.5mm,治具网格1mm
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图6](https://img.jishulink.com/202501/attachment/915734c7d8dd46e4b8da012953efeade.png)
4、前处理-更新模型/修改单位
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图7](https://img.jishulink.com/202501/attachment/55b5da8ccd2a4fbfaebdfd5b2ac3b873.png)
5、前处理-fabric
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图8](https://img.jishulink.com/202501/attachment/f3ed836e8fec4f0fb6d7fb7ad0238bfe.png)
6、前处理-OSS
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图9](https://img.jishulink.com/202501/attachment/a8f391f0a53847118d29d15c27638e87.png)
7、前处理-ModelingPly-铺层
不在Fabric铺层
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图10](https://img.jishulink.com/202501/attachment/ce1fc68bfacc4fb59727ad7a7e2bdf3c.png)
8、前处理-生成实体-Solidmodel
生成实体,查看厚度、角度
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图11](https://img.jishulink.com/202501/attachment/3d224a01c11445a68a0e91ba6b7d1c3a.png)
9、边界设置
关联其他模块,A5→B4,选择solid,D4-B2,进入model
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图12](https://img.jishulink.com/202501/attachment/fbad7c1efb9c4aec9a4c98a8821c7a4c.png)
固定支撑底部
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图13](https://img.jishulink.com/202501/attachment/ca30833739ef4007ba8e846fc9712b2a.png)
压头固定XZ方向自由度
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图14](https://img.jishulink.com/202501/attachment/2cf22157b1ba4f0d82a1b37cb1bfb22d.png)
顶部加载Remote force 600N
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图15](https://img.jishulink.com/202501/attachment/d531ad962241481ea6b83d43b6729a54.png)
10、接触设置
设置摩擦接触,系数为0.1,
interface Treatment设置Adjust to Touch
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图16](https://img.jishulink.com/202501/attachment/7fc48b66d3f1434d8b8e87d12bb9af68.png)
11、求解、查看变形和应力
Model查看结果
变形为19.54mm
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图17](https://img.jishulink.com/202501/attachment/8890ac52fee945458b0268c8b4ee60c3.png)
应力为2172.6Mpa
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图18](https://img.jishulink.com/202501/attachment/e9680c64bc374bfaaf9107ad6142aac6.png)
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图19](https://img.jishulink.com/202501/attachment/d5dc84a3ffaa431e8cb98c872cdc7875.png)
最大力在第一层,中间最小
ACP(post)后处理查看应力、变形
形变
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图20](https://img.jishulink.com/202501/attachment/2be8a8d906f14d188a7514e8ae96a155.png)
失效判断
基于最大应力和蔡吴失效准则判断,大于1图中红色区域全部失效,中间部分纤维和树脂都会失效,两侧树脂失效以及层间失效。
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图21](https://img.jishulink.com/202501/attachment/037008b92e7343208f2fd037ffeb8545.png)
各层应力
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图22](https://img.jishulink.com/202501/attachment/2b35ac0558df49a381a83a6788c9cbe6.png)
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图23](https://img.jishulink.com/202501/attachment/02256707468f4129b92acfca87fc10f6.png)
小结:
从5张受力图中看出,最上层,即直接与压头接触层,应力为2204Mpa,受到拉应力,第6层,即中间层应力最小,350Mpa,第12层,即最底层应力为1805Mpa,为负值,受到压应力。
三、模拟与实测对比
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图24](https://img.jishulink.com/202501/attachment/3296635bbda64e22a1b61f031f4b27a9.png)
实测数据
![workbench-ACP复合材料层合板三点弯曲仿真-实例3的图25](https://img.jishulink.com/202501/attachment/f831183efa69477996e1d71c180e8105.png)
小结:
1、形变误差3.15%,强度误差5.85%。可接受范围之内;
2、说明原材料数据准确可靠;
3、如果是壳单元,需要预留铺层厚度的间隙,注意网格生成方向,不能干涉,结果与实体单元接近。
点赞 1 评论 1 收藏