[案例分析]基于SU2的DLR-F6翼身组合体流场计算

1.模型介绍

[案例分析]基于SU2的DLR-F6翼身组合体流场计算的图1

DLR-F6翼身组合体是DLR开发的一款现代运输机典型巡航构型。该模型是第二届和第三届AIAA阻力预测研讨会所采用的标准算例之一。DLR-F6外形由机身、机翼和发动机短舱构成。该飞机的设计马赫数为0.75,升力系数0.50。针对带短舱和不带短舱的两种构型,研究人员分别开展了风洞试验,获得了包括升阻力特性曲线、表面压力分布和油流图谱等试验结果。本文以DLR-F6构型为测试算例,检验SU2对于复杂外形流场的模拟能力。

DLR-F6翼身组合体(带短舱)风洞试验模型尺寸为展长 1.1713 m 平均气动弦长0.1412 m 参考面积 0.1453 m2 展弦比 9.5。

2.网格生成

2.1 计算网格

本次计算所采用的网格是第二届AIAA阻力预测研讨会提供的的多块对接结构网格(ftp://cmb24.larc.nasa.gov/outgoing)。稀网格的单元数约为337万,密网格的单元数约为572万。

2.2 SU2网格生成

官方提供的网格为ICEM CFD源文件,需要将其转换为SU2求解器能够读取的网格存储格式。我们采用Pointwise V18.1 R1软件进行格式转换。具体步骤如下:

(1)打开ICEM CFD源文件,输出plot3d格式文件。

(2)打开Pointwise V18.1 R1软件,导入plot3d格式网格;

(3)删除机翼、机身内部固体域的网格块;

(4)运行Plot3dMerge.glf脚本,建立块之间的对接关系;

(5)将求解器设置为SU2,并设置边界条件;

(6)对网格进行旋转、缩放等操作。

(7)导出su2格式文件。

3.SU2求解器设置

3.1 流场求解cfg文件设置

下面以马赫数为0.75、攻角为0.49°、湍流模型为SA的计算工况为例,介绍DLR-F6算例的参数设置。

(1)问题定义

% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
%                               WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY,
%                               POISSON_EQUATION) 
PHYSICAL_PROBLEM= NAVIER_STOKES          %不考虑粘性选EULER,考虑粘性选NAVIER_STOKES
%
% Specify turbulence model (NONE, SA, SA_NEG, SST)
KIND_TURB_MODEL= SA    %一般选一方程模型SA或两方程模型SST
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
MATH_PROBLEM= DIRECT    %不做优化选DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO  %重启动计算选YES,同时需要在后面设置重启动文件% Restart flow input file   SOLUTION_FLOW_FILENAME
% Regime type (COMPRESSIBLE, INCOMPRESSIBLE)
REGIME_TYPE= COMPRESSIBLE     %马赫数为0.75,对应高速可压缩流场
%
% System of measurements (SI, US)
% International system of units (SI): ( meters, kilograms, Kelvins,
%                                       Newtons = kg m/s^2, Pascals = N/m^2, 
%                                       Density = kg/m^3, Speed = m/s,
%                                       Equiv. Area = m^2 )
% United States customary units (US): ( inches, slug, Rankines, lbf = slug ft/s^2, 
%                                       psf = lbf/ft^2, Density = slug/ft^3, 
%                                       Speed = ft/s, Equiv. Area = ft^2 )
SYSTEM_MEASUREMENTS= SI    %采用标准单位
(2)自由来流参数设置
% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.75   %自由来流马赫数
%
% Angle of attack (degrees, only for compressible flows)
AOA= 0.49   %来流攻角,注意SU2定义X+为流向(机头指向机尾方向),Y+为侧向(翼展方向),Z+为法向(垂直于翼面的方向)。
 %
% Side-slip angle (degrees, only for compressible flows)
SIDESLIP_ANGLE= 0.0  %侧滑角,在本次算例中,SIDESLIP_ANGLE值实际为攻角
%
% Init option to choose between Reynolds (default) or thermodynamics quantities
% for initializing the solution (REYNOLDS, TD_CONDITIONS)
INIT_OPTION= REYNOLDS   % REYNOLDS,根据雷诺数计算自由来流参数;TD_CONDITIONS,根据温度和密度参数计算自由来流参数
%
% Free-stream option to choose between density and temperature (default) for
% initializing the solution (TEMPERATURE_FS, DENSITY_FS)
FREESTREAM_OPTION= TEMPERATURE_FS  %给定自由来流静温还是静密度
%
% Free-stream temperature (288.15 K by default)
FREESTREAM_TEMPERATURE= 300  %自由来流静温值
%
% Reynolds number (non-dimensional, based on the free-stream values)
REYNOLDS_NUMBER= 3.0E6  %参考长度为REYNOLDS_LENGTH(单位米)的自由来流雷诺数(无量纲)
%
% Reynolds length (1 m by default)
REYNOLDS_LENGTH= 0.1412   %平均气动弦长,单位:米

(3)气体常数(一般不作修改)

% ---- IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS -------%
%
% Different gas model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS)
FLUID_MODEL= STANDARD_AIR
%
% Ratio of specific heats (1.4 default and the value is hardcoded
%                          for the model STANDARD_AIR)
GAMMA_VALUE= 1.4
%
% Specific gas constant (287.058 J/kg*K default and this value is hardcoded 
%                        for the model STANDARD_AIR)
GAS_CONSTANT= 287.058

(4)粘性常数(一般不作修改)

% --------------------------- VISCOSITY MODEL ---------------------------------%
%
% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY).
VISCOSITY_MODEL= SUTHERLAND
%
% Sutherland Viscosity Ref (1.716E-5 default value for AIR SI)
MU_REF= 1.716E-5
%
% Sutherland Temperature Ref (273.15 K default value for AIR SI)
MU_T_REF= 273.15
%
% Sutherland constant (110.4 default value for AIR SI)
SUTHERLAND_CONSTANT= 110.4

(5)热传导常数(一般不作修改)

% --------------------------- THERMAL CONDUCTIVITY MODEL ----------------------%
%
% Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL).
CONDUCTIVITY_MODEL= CONSTANT_PRANDTL
%
% Laminar Prandtl number (0.72 (air), only for CONSTANT_PRANDTL)
PRANDTL_LAM= 0.72
%
% Turbulent Prandtl number (0.9 (air), only for CONSTANT_PRANDTL)
PRANDTL_TURB= 0.90

(6)参考值设置

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation 力矩参考点
REF_ORIGIN_MOMENT_X = 0.00
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional moment用于力矩系数计算的参考长度
REF_LENGTH= 1.0
%
% Reference area for force coefficients (0 implies automatic calculation) 用于升阻力系数计算的参考面积
REF_AREA= 0.0727   %采用半模计算,REF_AREA为全模飞机的一半参考面积

%

% Compressible flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE,
%                              FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE)
%流场计算结果的无量纲方式
REF_DIMENSIONALIZATION= FREESTREAM_VEL_EQ_ONE

(7)边界条件设置

% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Navier-Stokes wall boundary marker(s) (NONE = no marker)
%物面边界
MARKER_HEATFLUX= (body, 0.0, wing, 0.0 )
%远场边界
% Far-field boundary marker(s) (NONE = no marker)
MARKER_FAR= ( inlet, outlet, up, down, right )
%对称边界
% Symmetry boundary marker(s) (NONE = no marker)
MARKER_SYM= ( left )
%
% Marker(s) of the surface to be plotted or designed
%标记用于后处理或设计的边界
MARKER_PLOTTING= (body,  wing )
%
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
%标记用于升阻力系数监测的边界

MARKER_MONITORING= (body, wing )

(8)数值求解通用参数

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
%梯度计算方法
NUM_METHOD_GRAD= GREEN_GAUSS
%
% Courant-Friedrichs-Lewy condition of the finest grid
%最密层网格上的CFL数
CFL_NUMBER= 1.0
%
% Adaptive CFL number (NO, YES)
%是否采用自适应CFL
CFL_ADAPT= YES
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
%                                        CFL max value )
CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 )
%
% Number of total iterations
%最大迭代步数
EXT_ITER= 50000

(9)限制器设置

% ----------------------- SLOPE LIMITER DEFINITION ----------------------------%
%
% Coefficient for the limiter
VENKAT_LIMITER_COEFF= 0.05
%
% Coefficient for the sharp edges limiter
ADJ_SHARP_LIMITER_COEFF= 3.0
%
% Reference coefficient (sensitivity) for detecting sharp edges.
REF_SHARP_EDGES= 3.0
%
% Remove sharp edges from the sensitivity evaluation (NO, YES)
SENS_REMOVE_SHARP= NO

(10)迭代参数

% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver for implicit formulations (BCGSTAB, FGMRES)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS)
LINEAR_SOLVER_PREC= ILU
%
% Linaer solver ILU preconditioner fill-in level (0 by default)
LINEAR_SOLVER_ILU_FILL_IN= 0
%
% Minimum error of the linear solver for implicit formulations
LINEAR_SOLVER_ERROR= 1E-10
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 5

(11)多重网格参数

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-Grid Levels (0 = no multi-grid)
%采用几重网格
MGLEVEL= 0
%
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
MGCYCLE= V_CYCLE
%
% Multi-grid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.75
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.75

(12)流场计算数值格式

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
%                              TURKEL_PREC, MSW)
%对流项格式
CONV_NUM_METHOD_FLOW= ROE
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
%重构格式
MUSCL_FLOW= YES
%
% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG,
%                BARTH_JESPERSEN, VAN_ALBADA_EDGE)
%限制器
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
%时间推进格式
TIME_DISCRE_FLOW= EULER_IMPLICIT
%
% Relaxation coefficient
RELAXATION_FACTOR_FLOW= 0.9

(13)湍流计算数值格式

% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%
%
% Convective numerical method (SCALAR_UPWIND)
%湍流对流项格式
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence equations.
%           Required for 2nd order upwind schemes (NO, YES)
%湍流重构格式
MUSCL_TURB= NO
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
%限制器
SLOPE_LIMITER_TURB= VENKATAKRISHNAN
%
% Time discretization (EULER_IMPLICIT)
%湍流项推进格式
TIME_DISCRE_TURB= EULER_IMPLICIT
%
% Relaxation coefficient
RELAXATION_FACTOR_TURB= 0.9

(14)收敛准则

% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Convergence criteria (CAUCHY, RESIDUAL)
CONV_CRITERIA= RESIDUAL
%
% Residual reduction (order of magnitude with respect to the initial value)
RESIDUAL_REDUCTION= 6
%
% Min value of the residual (log10 of the residual)
RESIDUAL_MINVAL= -12
%
% Start convergence criteria at iteration number
STARTCONV_ITER= 10
%
% Number of elements to apply the criteria
CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CAUCHY_EPS= 1E-10
%
% Direct function to apply the convergence criteria (LIFT, DRAG, NEARFIELD_PRESS)
CAUCHY_FUNC_FLOW= DRAG
%
% Adjoint function to apply the convergence criteria (SENS_GEOMETRY, SENS_MACH)
CAUCHY_FUNC_ADJFLOW= SENS_GEOMETRY

(15)输入输出设置

% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
%网格输入文件
MESH_FILENAME= wb_coarse.su2
%
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
%网格格式
MESH_FORMAT= SU2
%
% Mesh output file
%网格输出文件
MESH_OUT_FILENAME= mesh_out.su2
%
% Restart flow input file
%重启动输入文件
SOLUTION_FLOW_FILENAME= restart_flow.dat
%
% Restart adjoint input file
%重启动伴随输入文件
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output file format (PARAVIEW, TECPLOT, STL)
%输出文件格式
OUTPUT_FORMAT= TECPLOT_BINARY
%
% Output file convergence history (w/o extension) 
%输出的残差历史文件
CONV_FILENAME= history
%
% Output file restart flow
%输出的重启动文件
RESTART_FLOW_FILENAME= restart_flow.dat
%
% Output file restart adjoint
%输出的重启动伴随文件
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file flow (w/o extension) variables
%流场体数据输出文件名
VOLUME_FLOW_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
%边界数据输出文件
SURFACE_FLOW_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%文件输出频率
% Writing solution file frequency
WRT_SOL_FREQ= 500
%残差信息输出频率
% Writing convergence history frequency
WRT_CON_FREQ= 1
%

3.2 并行运算脚本sh文件设置

在算例cfg文件所在目录,创建如下内容的sh文件,采用sbatch命令提交即可。

#!/bin/bash
#SBATCH -N 7                               #并行节点数
#SBATCH -n 168                            #并行cpu数,=24*节点数
#SBATCH --job-name=DLR-F6     #job的名称
#SBATCH --ntasks-per-node=24    #每个节点用到的cpu数,无需修改
#SBATCH --output=%j.out             #算例运行过程中在屏幕上显示的信息
#SBATCH --error=%j.err                #报错信息
mpirun  SU2_CFD coarseAoA0.490.cfg         #流场求解
mpirun  SU2_SOL coarseAoA0.490.cfg         #输出tecplot结果文件

4.结果分析

4.1 DLR-F6流场特征

图2和3展示了采用SA湍流模型和稀网格计算的DLR-F6流场。由于DLR-F6构型在翼身连接处没有作修型处理,机翼尾翼靠近机身处流动产生了分离。此外,外侧机翼尾缘处流动也出现了小范围分离。

[案例分析]基于SU2的DLR-F6翼身组合体流场计算的图2

图 2 DLR-F6表面压力分布及物面摩擦力线

[案例分析]基于SU2的DLR-F6翼身组合体流场计算的图3

[案例分析]基于SU2的DLR-F6翼身组合体流场计算的图4
图 3 翼身连接处和机翼尾翼处流动

4.2 湍流模型影响

[案例分析]基于SU2的DLR-F6翼身组合体流场计算的图5

  1. Z/b=0.239

    [案例分析]基于SU2的DLR-F6翼身组合体流场计算的图6

  2. Z/b=0.331

[案例分析]基于SU2的DLR-F6翼身组合体流场计算的图7

  1. Z/b=0.411

    [案例分析]基于SU2的DLR-F6翼身组合体流场计算的图8

  2. Z/b=0.847

图 4 DLR-F6表面压力分布SA模型和SST模型计算结果对比

图4展示了SU2求解器分别采用SA模型和SST模型计算的DLR-F6翼身组合体表面压力分布(Ma=0.75,AoA=0.49°)。可以看到,两种模型的计算的压力分布曲线几乎重合,且与试验结果符合较好。表明两种湍流模型都能较好地模拟M6机翼流场。

4.3 稀网格和密网格压力分布


[案例分析]基于SU2的DLR-F6翼身组合体流场计算的图9

  1. Z/b=0.239

    [案例分析]基于SU2的DLR-F6翼身组合体流场计算的图10

  2. Z/b=0.331


[案例分析]基于SU2的DLR-F6翼身组合体流场计算的图11

  1. Z/b=0.411

    [案例分析]基于SU2的DLR-F6翼身组合体流场计算的图12

  2. Z/b=0.847

图 5 DLR-F6表面压力分布稀网格和密网格计算结果对比

图5展示了稀网格和密网格计算的DLR-F6翼身组合体表面压力分布,采用的湍流模型为SA模型。稀网格和密网格计算结果十分接近,仅在激波附近存在较小差异。

4.3 油流结果


[案例分析]基于SU2的DLR-F6翼身组合体流场计算的图13

图 6 M6机翼表面压力分布稀网格和密网格计算结果对比

油流试验仅在带短舱的模型上进行。为了与油流结果对比,本文采用SU2计算了带短舱的DLR-F6构型流场。图6展示了机翼表面摩檫力线与油流图片融合显示的结果。从图中可以看出,计算得到的外侧机翼尾缘分离区和翼身连接处的分离区均与试验符合较好。

5.结论

(1)采用SU2计算了DLR-F6翼身组合体流场,计算得到的压力分布曲线、物面极限流线和试验结果符合一致,表明SU2具备模拟DLR-F6等复杂外形流场的能力。

(2)在DLR-F6翼身组合体算例中,SA和SST湍流模型计算结果几乎重合,两种湍流模型都能较好地模拟DLR-F6流场。稀网格和密网格计算结果十分接近,仅在激波附近存在较小差异。

本文转自知乎专栏:SU2:学习与应用,原帖地址:https://zhuanlan.zhihu.com/p/61281032,感谢原作者,对作者其他文章感兴趣,欢迎关注:

[案例分析]基于SU2的DLR-F6翼身组合体流场计算的图14

默认 最新
当前暂无评论,小编等你评论哦!
点赞 1 评论 收藏
关注