Dragonfly深度学习教程

Dragonfly深度学习教程

共1章节 (更新至1)   24分钟

我要评分>
3000

2
  • 介绍
  • 章节
  • 评论
据预处理:首先,使用DragonFly对材料图像进行预处理,如滤波、归一化等操作,以提高数据质量。
特征提取:接下来,利用深度学习模型(如卷积神经网络,CNN)从预处理后的材料图像中提取特征。CNN通过多层卷积和池化操作,学习图像的高级特征表示。
模型训练:将提取到的特征输入到深度学习模型中进行训练。训练过程中,模型会不断调整参数,以最小化损失函数(如交叉熵损失、均方误差等)并提高预测准确性。
模型评估:在训练过程中或训练完成后,需要对模型进行评估,以检验模型性能。评估指标包括准确率、召回率、F1分数等。
模型优化:根据评估结果,对模型进行优化,如调整网络结构、超参数等,以提高模型性能。
模型部署与应用:将训练好的模型部署到DragonFly中,应用于实际问题的解决,如材料性能预测、缺陷检测等。


课程章节

共1章节 (更新至1)
  • 试看3分钟
    24分19秒

温馨提示

1.课程观看:购买课程后可直接在技术邻APP观看,或者在电脑网页端打开技术邻,登录后观看课程。

2.课程查看:使用购买时的账号登录技术邻,点击【个人中心】-【交易管理】即可。

3.课程下载:课程暂不支持缓存或下载。

4.课程有效期:除不可抗力因素外,本课程长期有效,随时在线可学。

5.海外IP购课:海外IP购课需判断是否会因服务器原因导致视频些微卡顿,如需购买,请确认播放流畅后购买。

购买须知

1.本课程为付费内容,购买成功后方可观看。

2.本内容为虚拟商品,购买后无法退换或转让,购买前请查看课程介绍,试看免费章节,慎重购买。

3.实际购买价格以页面展示的价格及订单结算页显示价格为准。

默认 最新
当前暂无评论,小编等你评论哦!
工业CT专家

本科/高级应用工程师

影响力

粉丝

内容

获赞

项目客服
培训客服